Science in Short Chapters. W. Mattieu Williams. Читать онлайн. Newlib. NEWLIB.NET

Автор: W. Mattieu Williams
Издательство: Bookwire
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 4057664648372
Скачать книгу
on the fluid envelope of the sun; the portion over the polar regions being held down by the whole force of solar gravitation, while the equatorial atmosphere is subject to this pressure, or attraction, minus the centrifugal impulse due to solar rotation. He maintains that this “centrifugal action, however small in amount as compared with the enormous attraction of the sun, would destroy the balance, and determine a motion towards the sun as regards the mass opposite the polar surface, and into space as regards the equatorial mass.” He adds that “the equatorial current so produced, owing to its mighty proportions, would flow outwards into space, to a practically unlimited distance.”

      I will not here discuss the dynamics of this hypothesis; whether the reclaiming action of the superior polar attraction would occur at the vast distances from the sun supposed by Dr. Siemens, or much nearer home, and produce an effect like the recurving of the flame of his own regenerative gas-burner; or, whether he is right in comparing the centrifugal force at the solar equator with that of the earth, by simply measuring the relative velocity of translation irrespective of angular velocity. I will merely suggest that in discussing these, it is necessary, in order to do justice to Dr. Siemens, to always keep in mind the assumed condition of an universal and continuous atmospheric medium, and not to reason, as some have done already, upon the basis of a limited solar atmosphere with a definite boundary, from beyond which particles of atmospheric matter are to be flung away into vacuous space, without the intervention of all-pervading fluid pressure.

      It is evident that if such fan action can bring back all the material that has received the solar radiations, and which holds them either as temperature or otherwise, the restoration and perpetuation of solar energy will be complete, for even the heat received by our earth and its brother and sister planets would still remain in the family, as they would radiate it into the interplanetary atmospheric matter supposed to be reclaimed by the sun.

       But, as Mr. Proctor has clearly shown, the rays of the sun cannot do all the work thus required for his own restoration without becoming extinguished as regards the outside universe; and if the other suns—i.e., the stars—do the same they could not be visible to us.

      Thus Dr. Siemens’ theory removes our sun from his place among the stars, and renders the great problem of stellar radiation more inscrutable than ever by thus putting the evidence of our great luminary altogether out of court.

      My theory, on the contrary, demands only a gradual absorption of solar and stellar rays, such as actual observation of their varying splendor indicates.

      If space were absolutely transparent, and its infinite depths peopled throughout, the firmament would present to our view one continuous blazing dome, as all the spaces between the nearer stars would be filled by the infinity of radiations from the more distant.

       Table of Contents

      What a horrible place must this world appear when regarded according to our ideas from an insect’s point of view! The air infested with huge flying hungry dragons, whose gaping and snapping mouths are ever intent upon swallowing the innocent creatures for whom, according to the insect, if he were like us, a properly constructed world ought to be exclusively adapted. The solid earth continually shaken by the approaching tread of hideous giants—moving mountains—that crush out precious lives at every footstep, an occasional draught of the blood of these monsters, stolen at life-risk, affording but poor compensation for such fatal persecution.

      Let us hope that the little victims are less like ourselves than the doings of ants and bees might lead us to suppose; that their mental anxieties are not proportionate to the optical vigilance indicated by the four thousand eye-lenses of the common house-fly, the seventeen thousand of the cabbage butterfly and the wide-awake dragon-fly, or the twenty-five thousand possessed by certain species of still more vigilant beetles.

      Each of these little eyes has its own cornea, its lens, and a curious six-sided, transparent prism, at the back of which is a special retina spreading out from a branch of the main optic nerve, which, in the cockchafer and some other creatures, is half as large as the brain. If each of these lenses forms a separate picture of each object rather than a single mosaic picture, as some anatomists suppose, what an awful army of cruel giants must the cockchafer behold when he is captured by a schoolboy!

      The insect must see a whole world of wonders of which we know little or nothing. True, we have microscopes, with which we can see one thing at a time if carefully laid upon the stage; but what is the finest instrument that Ross can produce compared to that with twenty-five thousand object-glasses, all of them probably achromatic, and each one a living instrument, with its own nerve-branch supplying a separate sensation? To creatures thus endowed with microscopic vision, a cloud of sandy dust must appear like an avalanche of massive rock-fragments, and everything else proportionally monstrous.

      One of the many delusions engendered by our human self-conceit and habit of considering the world as only such as we know it from our human point of view, is that of supposing human intelligence to be the only kind of intelligence in existence. The fact is, that what we call the lower animals have special intelligence of their own as far transcending our intelligence as our peculiar reasoning intelligence exceeds theirs. We are as incapable of following the track of a friend by the smell of his footsteps as a dog is of writing a metaphysical treatise.

      So with insects. They are probably acquainted with a whole world of physical facts of which we are utterly ignorant. Our auditory apparatus supplies us with a knowledge of sounds. What are these sounds? They are vibrations of matter which are capable of producing corresponding or sympathetic vibrations of the drums of our ears or the bones of our skull. When we carefully examine the subject, and count the number of vibrations that produce our world of sounds of varying pitch, we find that the human ear can only respond to a limited range of such vibrations. If they exceed three thousand per second, the sound becomes too shrill for average people to hear it, though some exceptional ears can take up pulsations or waves that succeed each other more rapidly than this.

      Reasoning from the analogy of stretched strings and membranes, and of air vibrating in tubes, etc., we are justified in concluding that the smaller the drum or the tube the higher will be the note it produces when agitated, and the smaller and the more rapid the aerial wave to which it will respond. The drums of insect ears, and the tubes, etc., connected with them, are so minute that their world of sounds probably begins where ours ceases; that the sound which appears to us as continuous is to them a series of separated blows, just as vibrations of ten to twelve per second appear to us. We begin to hear such vibrations as continuous sounds when they amount to about thirty per second. The insect’s continuous sound probably begins beyond three thousand. The blue-bottle may thus enjoy a whole world of exquisite music of which we know nothing.

      There is another very suggestive peculiarity in the auditory apparatus of insects. Its structure and position are something between those of an ear and of an eye. Careful examination of the head, of one of our domestic companions—the common cockroach or black-beetle—will reveal two round white points, somewhat higher than the base of the long outer antennæ, and a little nearer to the middle line of the head. These white projecting spots are formed by the outer transparent membrane of a bag or ball filled with fluid, which ball or bag rests inside another cavity in the head. It resembles our own eye in having this external transparent tough membrane, which corresponds to the cornea or transparent membrane forming the glass of our eye-window; which, like the cornea, is backed by the fluid in an ear-ball corresponding to our eye-ball, and the back of this ear-ball appears to receive the outspreadings of a nerve, just as the back of our eye is lined with that outspread of the optic nerve forming the retina. There does not appear to be in this or other insects a tightly stretched membrane which, like the membrane of our ear-drum, is fitted to take up bodily air-waves and vibrate responsively to them. But it is evidently adapted to receive and concentrate some kind of vibration, or motion, or tremor.

      What kind of motion can this be? What kind of perception does this curious organ supply? To answer these questions we must travel beyond the strict limits of scientific induction and enter the fairyland of scientific imagination.