Administrative Records for Survey Methodology. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9781119272069
Скачать книгу
href="#ulink_c69a25ae-4502-5f03-8841-47455d0e9b04">1.3.3, which however do not cover all the practical situations.

      1 Axelson, M., Holmberg, A., Jansson, I. et al. (2020). A register-based census: the Swedish experience (Chapter 8). In: Administrative Records for Survey Methodology (eds. A.Y. Chun and M. Larsen). Wiley.

      2 Bikker, R., Daalmans, J., and Mushkudiani, N. (2013). Benchmarking large accounting frameworks: a generalized multivariate model. Economic Systems Research 25: 390–408.

      3 Böhning, D., Van der Heijden, P.G.M., and Bunge, J. (2017). Capture–Recapture Methods for Social and Medical Sciences. Chapman & Hall/CRC.

      4 Brackstone, G.J. (1987). Issues in the use of administrative records for statistical purposes. Survey Methodology 13: 29–43.

      5 Brion, P. and Gros, E. (2015). Statistical estimators using jointly administrative and survey data to produce French Structural Business Statistics. Journal of Official Statistics 31: 589–609.

      6 Brown, J.J., Diamond, I.D., Chambers, R.L. et al. (1999). A methodological strategy for a one-number census in the UK. Journal of the Royal Statistical Society, Series A 162: 247–267.

      7 Burger, J., van Delden, A. and Scholtus, S. (2015). Sensitivity of Mixed-Source Statistics to Classification Errors. Journal of Official Statistics, 31: 489–506.

      8 Chambers, R.L. and Clark, R. (2012). An Introduction to Model-Based Survey Sampling with Applications. Oxford University Press.

      9 Chambers, R.L. and Ren, R. (2004). Outlier robust imputation of survey data. In: JSM Proceedings, Survey Research Methods Section. Alexandria, VA, 3336–3344. American Statistical Association.

      10 Coutinho, W., de Waal, T., and Shlomo, N. (2013). Calibrated hot deck imputation subject to edit restrictions. Journal of Official Statistics 29: 1–23.

      11 Deville, J.-C., Särndal, C.-E., and Sautory, O. (1993). Generalized raking procedures in survey sampling. Journal of the American Statistical Association 88: 1013–1020.

      12 Di Cecco, D., Di Zio, M., Filipponi, D., and Rocchetti, I. (2018). Population size estimation using multiple incomplete lists with overcoverage. Journal of Official Statistics 34: 557–572.

      13 Di Consiglio, L. and Tuoto, T. (2015). Coverage evaluation on probabilistically linked data. Journal of Official Statistics 31: 415–429.

      14 Djerf, K. (1997). Effects of post-stratification on the estimates of the Finnish Labour Force Survey. Journal of Official Statistics 13: 29–39.

      15 D’Orazio, M., Di Zio, M., and Scanu, M. (2006). Statistical Matching: Theory and Practice. Chichester: Wiley.

      16 Dostál, L., Münnich, R., Gabler, S., and Ganninger, M. (2016). Frame correction modelling with applications to the German Register-Assisted Census 2011. Scandinavian Journal of Statistics 43: 904–920.

      17 Fellegi, I.P. and Sunter, A.B. (1969). A theory for record linkage. Journal of the American Statistical Association 64: 1183–1210.

      18 Fienberg, S.E. (1972). The multiple recapture census for closed populations and incomplete 2k contingency tables. Biometrika 59: 409–439.

      19 Fosen, J. and Zhang, L.-C. (2011). Quality evaluation of employment status in register-based census. In: Proceedings of the 58th World Statistical Congress, Dublin, 2587–2596. International Statistics Institute.

      20 Guarnera, U. and Varriale, R. (2015). Estimation from contaminated multi-source data based on latent class models. NTTS.

      21 Herzog, T.N., Scheuren, F.J., and Winkler, W.E. (2007). Data Quality and Record Linkage Techniques. Springer.

      22 Hogan, H. (1993). The post-enumeration survey: operations and results. Journal of the American Statistical Association 88: 1047–1060.

      23 Houbiers, M. (2004). Towards a social statistical database and unified estimates at Statistics Netherlands. Journal of Official Statistics 20: 55–75.

      24 Kline, R.B. (2016). Principles and Practice of Structural Equation Modeling, 4e. The Guilford Press.

      25 Luna-Hernández, A. (2016). Multivariate structure preserving estimation for population compositions. University of Southampton, School of Social Sciences, Doctoral Thesis, 155 pp. https://eprints.soton.ac.uk/404689/

      26 Mancini, L. and Toti, S. (2014). Dalla popolazione residente a quella abitualmente dimorante: modelli di previsione a confronto sui dati del censimento 2011. ISTAT working papers (in Italian).

      27 Meijer, E., Rohwedder, S., and Wansbeek, T.J. (2012). Measurement error in earnings data: using a mixture model approach to combine survey and register data. Journal of Business & Economic Statistics 30: 191–201.

      28 Mushkudiani, N., Daalmans, J., and Pannekoek, J. (2014). Macro-integration for solving large data reconciliation problems. Austrian Journal of Statistics 43: 29–48.

      29 Mushkudiani, N., Daalmans, J., and Pannekoek, J. (2015). Reconciliation of labour market statistics using macro-integration. Statistical Journal of the IAOS 31: 257–262.

      30 Mushkudiani, N., Pannekoek, J., and Zhang, L.-C. (2016). Uncertainty measurement for economic accounts. Statistics Netherlands: Discussion paper.

      31 Myrskyla, P. (1991). Census by questionnaire census by registers and administrative records: the experience of Finland. Journal of Official Statistics 7: 457–474.

      32 Nirel, R. and Glickman, H. (2009). Sample surveys and censuses. In: Sample Surveys: Design, Methods and Applications (Chapter 21), vol. 29A (eds. D. Pfeffermann and C.R. Rao), 539–565. North Holland: Elsevier.

      33 ONS – Office for National Statistics (2013). Beyond 2011: Producing Population Estimates Using Administrative Data: In Practice. ONS Internal Report. http://www.ons.gov.uk/ons/about-ons/who-ons-are/programmes-and-projects/beyond-2011/reports-and-publications/index.html (accessed 04 August 2020).

      34 Pannekoek, J. and Zhang, L.-C. (2015). Optimal adjustments for inconsistency in the presence missing data. Survey Methodology 41: 127–144.

      35 Pannekoek, J., Shlomo, N., and DeWaal, T. (2013). Calibrated imputation of numerical data under linear edit restrictions. The Annals of Applied Statistics 7: 1983–2006.

      36 Pavlopoulos, D. and Vermunt, J.K. (2015). Measuring temporary employment. Do survey or register data tell the truth? Survey Methodology 41: 197–214.

      37 Purcell, N. and Kish, L. (1980). Postcensal estimates for local areas (or domains). International Statistical Review 48: 3–18.

      38 Rao, J.N.K. and Molina, I. (2015). Small Area Estimation, 2e. New York: Wiley.

      39 Renaud, A. (2007). Estimation of the coverage of the 2000 census of population in Switzerland: methods and results. Survey Methodology 33: 199–210.

      40 Renssen, R.H. and Nieuwenbroek, N.J. (1997). Aligning estimates for common variables in two or more sample surveys. Journal of the American Statistical Association 92: 369–374.

      41 Säarndal, C.-E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey Sampling. New York: Springer-Verlag.

      42 Shlomo, N., de Waal, T., and Pannekoek, J. (2009). Mass imputation for building a numerical statistical database. Presented at the UNECE Statistical Data Editing Workshop, Neuchatel (October 2009).

      43 Statistics Canada (2015). Statistics Canada Quality Guidelines. http://www.statcan.gc.ca/pub/12-539-x/12-539-x2009001-eng.htm (accessed 4 August 2020).

      44 Stoerts, R., Hall, R., and Fienberg, S. (2015). A Bayesian approach to graphical record linkage and de-duplication. https://arxiv.org/abs/1312.4645