Coal-Fired Power Generation Handbook. James G. Speight. Читать онлайн. Newlib. NEWLIB.NET

Автор: James G. Speight
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119510130
Скачать книгу
rel="nofollow" href="#uf214e753-e5ab-52fe-a818-ffa9928fd613">Chapter 5).

      It is true, of course, that anthracite typically contains more carbon than bituminous coal which, in turn, usually contains more carbon than subbituminous coal, and so on. Nevertheless, the distinctions between the proportions of elemental carbon in the various coals are not so well defined as for the fixed carbon and extreme caution is advised in attempting to equate coal rank with the proportion of elemental carbon in the coal.

      There have been criticisms of this method of classification because of the variability of the natural bed moisture and the numbering system for the classes of coal. With regard to the natural bed moisture, the fact that it may vary over extremely wide limits has been cited as a distinct disadvantage to using this particular property as a means of classifying coal. In fact, the natural bed moisture is determined under a set of prescribed, and rigorously standardized, conditions, thereby making every attempt to offset any large variability in the natural bed moisture. With regard to the numbering system, it has been indicated that the class numbering system should be reversed so that a high number would indicate a high rank.

      Nevertheless, in spite of these criticisms, the method has survived and has been generally adopted for use throughout North America as the predominant method of classification (Speight, 2013 and references cited therein).

      2.3.4 Coal Survey

      Although the English system does appear to have some merit because of the dependence on two simple physical parameters (i.e., the volatile matter content of the coal and the Gray-King carbonization assay), there are, nevertheless, disadvantages to the method, not the least of which is the susceptibility of the Gray-King assay data to oxidation (weathering) of the coal and, apparently, the time required to conduct the assay.

Rank
Indicative of the degree of metamorphism (or coalification) to which the original mass of plant debris (peat) has been subjected during its burial history.
Dependent on the maximum temperature to which the proto-coal has been exposed and the time it has been held at that temperature.
Also reflects the depth of burial and the geothermal gradient prevailing at the time of coalification in the basin concerned.
Type
Indicative of the nature of the plant debris (proto-coal) from which the coal was derived, including the mixture of plant components (wood, leaves, algae) involved and the degree of degradation before burial.
The individual plant components occurring in coal, and in some cases fragments or other materials derived from them, are referred to as macerals.
The kind and distribution of the various macerals are the starting point for most coal petrology studies.
Grade
Indicative of the extent to which the accumulation of plant debris has been kept free of contamination by inorganic material (mineral matter), before burial (i.e., during peat accumulation), after burial, and during coalification.
A high-grade coal is coal, regardless of its rank or type, with a low overall content of mineral matter.

      2.3.5 International System

      The International System of coal classification came into being after the Second World War as a result of the greatly increased volume of trade between the various coal-producing and coal-consuming nations. This particular system, which still finds limited use in Europe, defines coal as two major types: hard coal and brown coal. For the purposes of the system, hard coal is defined as a coal with a calorific value greater than 10,260 Btu/lb (5700 kcal/ kg) on a moist, but ash-free basis. Conversely, brown coal is defined as coal with a calorific value less than 10,260 Btu/lb (5,700 kcal/kg). In this system, the hard coals (based on dry, ash-free volatile matter content and moist, ash-free calorific value) are divided into groups according to their caking properties (Chapters 5, 6). These latter properties can be determined either by the free swelling test and the caking property is actually a measure of how a coal behaves when it is heated rapidly (Speight, 2013). The coal groups are then further subdivided into subgroups according to their coking properties (which may actually appear to be a paradox since the coking properties are actually a measure of how coal behaves when it is heated slowly).

Class Volatile matter* (% w/w) Comments

e-mail: [email protected]