(Не)совершенная случайность. Как случай управляет нашей жизнью. Леонард Млодинов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Леонард Млодинов
Издательство:
Серия:
Жанр произведения: Математика
Год издания: 2008
isbn: 978-5-904584-56-6
Скачать книгу
выигрываете при условии, если меняете первоначальный выбор. Итак, ваше решение сводится к догадке: в какой ситуации вы окажетесь? Если вы чувствуете, что вашим изначальным выбором руководит шестое чувство, что вас направляет сама судьба, может, и не стоит менять свое решение. Но если вам не дано завязывать ложки узлами с помощью одной только силы мысли, то наверняка шансы того, что вы попали в ситуацию «ошибочной догадки», равны 2 к 1, так что лучше сменить дверь. Вот и статистика телепередачи подтверждает: те, кто оказывался в подобной ситуации и изменял свое первоначальное решение, выигрывали примерно в два раза чаще, чем те, кто стоял на своем.

      Задача Монти Холла трудна для восприятия, потому что тут нужно хорошенько подумать, иначе роль ведущего (прямо скажем, как роль мамы в нашей жизни) останется недооцененной. В то время как ведущий направляет игру в определенное русло. Роль ведущего станет очевидной, если мы предположим, что вместо 3 дверей у нас их 100. Вы, как и прежде, выбираете дверь 1, однако теперь ваша вероятность угадать равна 1 из 100. А шансы того, что «мазерати» спрятана за одной из оставшихся дверей, равны 99 из 100. Как и прежде, ведущий открывает все двери, кроме той, которую вы не выбрали, при этом не открывая ту самую дверь, за которой находится «мазерати» (если, конечно, такая дверь остается). После этого шансы того, что «мазерати» скрывается за дверью, которую выбрали вы, равны по-прежнему 1 из 100, а шансы того, что «мазерати» находится за другой дверью, все так же равны 99 из 100. Но теперь благодаря вмешательству ведущего остается только одна дверь, представляющая все 99 тех, других дверей, и таким образом вероятность нахождения «мазерати» за этой оставшейся дверью равняется 99 из 100!

      Возникни задача Монти Холла во времена Кардано, интересно, чью бы позицию тот занял: Мэрилин вос Савант или Поля Эрдеша? Задача легко решается с помощью закона пространства элементарных событий, однако сказать наверняка мы все равно не можем, поскольку самое раннее упоминание о подобной задаче (под другим названием) возникает в 1959 г., в статье Мартина Гарднера в «Сайентифик Америкэн»[71]. Гарднер назвал задачу «поразительной, сбивающей с толку задачей» и заметил, что «ни в одной другой области математики не совершают досадных промахов с такой легкостью, как в области теории вероятностей». Конечно, для математика досадный промах чреват разве что конфузом, а вот для игрока это вопрос, скажем прямо, жизненно важный. Поэтому нет ничего удивительного в том, что когда дело дошло до первой систематически изложенной теории вероятностей, именно Кардано как заядлый игрок и решил разобраться в ней.

      Однажды, когда Кардано был еще подростком, у него внезапно умер друг. Прошло всего несколько месяцев, и Кардано заметил, что никто о друге больше и не вспоминает. Что его порядком опечалило, оставив отпечаток в душе. Как можно справиться с тем, что жизнь преходяща? И Кардано решил, что единственный способ – оставить после себя что-то: наследников, труды на века, а может, и то, и


<p>71</p>

Martin Gardner, “Mathematical Games”, Scientific American, October 1959, pp. 180–82.