Halogen Bonding in Solution. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9783527825745
Скачать книгу
Aakery, C.B., Beatty, A.M., and Helfrich, B.A. (2001). Angew. Chem. Int. Ed. 40: 3240–3242.

      75 75 Aakeröy, C.B., Wijethunga, T.K., Desper, J., and Daković, M. (2016). Cryst. Growth Des. 16: 2662–2670.

      76 76 Aakeröy, C.B., Spartz, C.L., Dembowski, S. et al. (2015). IUCrJ 2: 498–510.

      77 77 Aakeröy, C.B., Chopade, P.D., and Desper, J. (2011). Cryst. Growth Des. 11: 5333–5336.

      78 78 Aakeröy, C.B., Chopade, P.D., Ganser, C., and Desper, J. (2011). Chem. Commun. 47: 4688–4690.

      79 79 Tothadi, S. and Desiraju, G.R. (2013). Chem. Commun. 49: 7791–7793.

      80 80 Voth, A.R., Khuu, P., Oishi, K., and Ho, P.S. (2009). Nat. Chem. 1: 74–79.

      81 81 Vasylyeva, V., Nayak, S.K., Terraneo, G. et al. (2014). CrystEngComm 16: 8102–8105.

      82 82 Takemura, A., McAllister, L.J., Hart, S. et al. (2014). Chem. Eur. J. 20: 6721–6732.

      83 83 Decato, D.A. and Berryman, O.B. (2018). Simultaneous halogen and hydrogen bonding to carbonyl and thiocarbonyl functionality. In: Multi‐Component Crystals, vol. 1 (eds. E. Tiekink and J. Zukerman), 272–288. Berlin, Boston: De Gruyter.

      84 84 Logothetis, T.A., Meyer, F., Metrangolo, P. et al. (2004). New J. Chem. 28: 760–763.

      85 85 Lisac, K. and Cinčić, D. (2018). CrystEngComm 20: 5955–5963.

      86 86 Puttreddy, R., Peuronen, A., Lahtinen, M., and Rissanen, K. (2019). Cryst. Growth Des. 19: 3815–3824.

      87 87 Ding, X., Tuikka, M., Rissanen, K., and Haukka, M. (2019). Crystals 9: 319.

      88 88 Puttreddy, R., von Essen, C., and Rissanen, K. (2018). Eur. J. Inorg. Chem. 2018: 2393–2398.

      89 89 Smart, P., Bejarano‐Villafuerte, Á., and Brammer, L. (2013). CrystEngComm 15: 3151.

      90 90 Brammer, L., Mínguez Espallargas, G., and Adams, H. (2003). CrystEngComm 5: 343–345.

      91 91 Mínguez Espallargas, G., Zordan, F., Arroyo Marín, L. et al. (2009). Chem. Eur. J. 15: 7554–7568.

      92 92 Zordan, F., Brammer, L., and Sherwood, P. (2005). J. Am. Chem. Soc. 127: 5979–5989.

      93 93 Libri, S., Jasim, N.A., Perutz, R.N., and Brammer, L. (2008). J. Am. Chem. Soc. 130: 7842–7844.

      94 94 Smith, D.A., Brammer, L., Hunter, C.A., and Perutz, R.N. (2014). J. Am. Chem. Soc. 136: 1288–1291.

      95 95 Ormond‐Prout, J.E., Smart, P., and Brammer, L. (2012). Cryst. Growth Des. 12: 205–216.

      96 96 Carter, K.P., Kalaj, M., Surbella, R.G. et al. (2017). Chem. Eur. J. 23: 15355–15369.

      97 97 Carter, K.P., Kalaj, M., Kerridge, A., and Cahill, C.L. (2018). CrystEngComm 20: 4916–4925.

      98 98 Lieffrig, J., Jeannin, O., Guizouarn, T. et al. (2012). Cryst. Growth Des. 12: 4248–4257.

      99 99 Lieffrig, J., Jeannin, O., Shin, K.‐S. et al. (2012). Crystals 2: 327–337.

      100 100 Espallargas, G.M., Recuenco, A., Romero, F.M. et al. (2012). CrystEngComm 14: 6381.

      101 101 Pang, X., Zhao, X.R., Wang, H. et al. (2013). Cryst. Growth Des. 13: 3739–3745.

      102 102 Boubekeur, K., Syssa‐Magalé, J.‐L., Palvadeau, P., and Schöllhorn, B. (2006). Tetrahedron Lett. 47: 1249–1252.

      103 103 Clemente‐Juan, J.M., Coronado, E., Mínguez Espallargas, G. et al. (2010). CrystEngComm 12: 2339.

      104 104 Troff, R.W., Mäkelä, T., Topić, F. et al. (2013). Eur. J. Org. Chem. 2013: 1617–1637.

      105 105 Makhotkina, O., Lieffrig, J., Jeannin, O. et al. (2015). Cryst. Growth Des. 15: 3464–3473.

      106 106 Raatikainen, K. and Rissanen, K. (2011). CrystEngComm 13: 6972.

      107 107 Mavračić, J., Cinčić, D., and Kaitner, B. (2016). CrystEngComm 18: 3343–3346.

      108 108 Stilinović, V., Horvat, G., Hrenar, T. et al. (2017). Chem. Eur. J. 23: 5244–5257.

      109 109 Eraković, M., Cinčić, D., Molčanov, K., and Stilinović, V. (2019). Angew. Chem. Int. Ed. 58: 15702–15706.

      110 110 Caronna, T., Liantonio, R., Logothetis, T.A. et al. (2004). J. Am. Chem. Soc. 126: 4500–4501.

      111 111 Sinnwell, M.A., Blad, J.N., Thomas, L.R., and MacGillivray, L.R. (2018). IUCrJ 5: 491–496.

      112 112 Sinnwell, M.A. and MacGillivray, L.R. (2016). Angew. Chem. Int. Ed. 55: 3477–3480.

      113 113 DeCicco, R.C., Luo, L., and Goroff, N.S. (2019). Acc. Chem. Res. 52: 2080–2089.

      114 114 Cinčić, D., Friščić, T., and Jones, W. (2008). J. Am. Chem. Soc. 130: 7524–7525.

      115 115 Cavallo, G., Metrangolo, P., Pilati, T. et al. (2010). Chem. Soc. Rev. 39: 3772–3783.

      116 116 Metrangolo, P., Pilati, T., Terraneo, G. et al. (2009). CrystEngComm 11: 1187–1196.

      117 117 Xu, Y., Gabidullin, B., and Bryce, D.L. (2019). J. Phys. Chem. A 123: 6194–6209.

      118 118 Szell, P.M.J., Grébert, L., and Bryce, D.L. (2019). Angew. Chem. Int. Ed. 58: 13479–13485.

      119 119 Shankar, S., Chovnik, O., Shimon, L.J.W. et al. (2018). Cryst. Growth Des. 18: 1967–1977.

      120 120 Syssa‐Magalé, J.‐L., Boubekeur, K., Leroy, J. et al. (2014). CrystEngComm 16: 10380–10384.

      121 121 Titi, H.M., Nandi, G., Tripuramallu, B.K., and Goldberg, I. (2015). Cryst. Growth Des. 15: 3063–3075.

      122 122 Catalano, L., Perez‐Estrada, S., Wang, H.‐H. et al. (2017). J. Am. Chem. Soc. 139: 843–848.

      123 123 Simonov, S., Zorina, L., Wzietek, P. et al. (2018). Nano Lett. 18: 3780–3784.

      124 124 Müller, M., Albrecht, M., Gossen, V. et al. (2010). Chem. Eur. J. 16: 12446–12453.

      125 125 García, M.D., Martí‐Rujas, J., Metrangolo, P. et al. (2011). CrystEngComm 13: 4411.

      126 126 Peuronen, A., Rinta, H., and Lahtinen, M. (2015). CrystEngComm 17: 1736–1740.

      127 127 Szell, P.M.J., Gabriel, S.A., Caron‐Poulin, E. et al. (2018). Cryst. Growth Des. 18: 6227–6238.

      128 128 Widner, D.L., Knauf, Q.R., Merucci, M.T. et al. (2014). J. Org. Chem. 79: 6269–6278.

      129 129 Politzer, P., Lane, P., Concha, M.C. et al. (2007). J. Mol. Model. 13: 305–311.

      130 130 Politzer, P., Murray, J.S., and Clark, T. (2013). Phys. Chem. Chem. Phys. 15: 11178.

      131 131 Frontera, A., Gamez, P., Mascal, M. et al. (2011). Angew. Chem. Int. Ed. 50: 9564–9583.

      132 132 Wolters, L.P., Schyman, P., Pavan, M.J. et al. (2014). Wiley Interdiscip. Rev. Comput. Mol. Sci. 4: 523–540.

      133 133 Kolář, M.H. and Hobza, P. (2016). Chem. Rev. 116: 5155–5187.

      134 134 Sedlak, R., Kolář, M.H., and Hobza, P. (2015). J. Chem. Theor. Comput. 11: 4727–4732.

      135 135 Nyburg, S.C. and Faerman, C.H. (1985). Acta Crystallogr. Sect. B Struct. Sci. 41: 274–279.

      136 136 Hathwar, V.R. and Guru Row, T.N. (2011). Cryst. Growth Des. 11: 1338–1346.

      137 137 Chopra, D. (2012). J. Phys. Chem. A 116: 9791–9801.

      138 138 Murray, J.S. and Politzer, P. (2011). Wiley Interdiscip. Rev. Comput. Mol. Sci. 1: 153–163.

      139 139 Riley, K.E., Murray, J.S., Fanfrlík, J. et al. (2011). J. Mol. Model. 17: 3309–3318.

      140 140 Politzer, P. and Murray, J.S. (2017). Crystals 7: 212.

      141 141 Brinck, T., Murray, J.S., and Politzer, P. (1993). Int. J. Quantum Chem. 48: 73–88.

      142 142 Murray, J.S., Macaveiu, L., and Politzer, P. (2014). J. Comput. Sci. 5: 590–596.

      143 143 Riley,