Metal Oxide Nanocomposites. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9781119364733
Скачать книгу
Nature, 442, 282, 2006.

      4. Hancock, Y., The 2010 Nobel Prize in physics: A Ground-breaking experiments on graphene. J. Phys. D: Appl. Phys., 44, 473001, 2011.

      5. Gao, W., Graphene Oxide, pp. 61–95, Springer, Cham, 2015.

      7. Badri, M.A.S., Salleh, M.M., Noor, N.F.a.M., Rahman, M.Y.A., Umar, A.A., Green synthesis of few-layered graphene from aqueous processed graphite exfoliation for graphene thin film preparation. Mater. Chem. Phys., 193, 212–219, 2017.

      8. Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater., 8, 203, 2009.

      9. Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 108, 19912–19916, 2004.

      10. Amjadipour, M., MacLeod, J., Lipton-Duffin, J., Tadich, A., Boeckl, J.J., Iacopi, F., Motta, N., Electron effective attenuation length in epitaxial graphene on SiC. Nanotechnology, 30, 025704, 2018.

      11. De Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., Conrad, E., Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci., 108, 16900–16905, 2011.

      12. Cao, Y., Su, Q., Che, R., Du, G., Xu, B., One-step chemical vapor synthesis of Ni/graphene nanocomposites with excellent electromagnetic and electrocatalytic properties. Synth. Met., 162, 968–973, 2012.

      13. Yazici, M.S., Azder, M.A., Salihoglu, O., San, F.G.B., Ultralow Pt loading on CVD graphene for acid electrolytes and PEM fuel cells. Int. J. Hydrogen Energy, 43, 18572–18577, 2018.

      14. Obraztsov, P.A., Rybin, M.G., Tyurnina, A.V., Garnov, S.V., Obraztsova, E.D., Obraztsov, A.N., Svirko, Y.P., Broadband light-induced absorbance change in multilayer graphene. Nano Lett., 11, 1540–1545, 2011.

      15. Bagley, J., Hsu, C.-C., Tseng, W.-S., Teague, M., Yeh, N.-C., High yield bottom-up PECVD synthesis of graphene nanoribbons and their application in supercapacitors. ENFL-109, 2018.

      16. Wang, X., Li, Q., Zhang, L., Hu, Z., Yu, L., Jiang, T., Lu, C., Yan, C., Sun, J., Liu, Z., Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater., 30, 26, 1800963, 2018.

      17. Guo, L., Zhang, Z., Sun, H., Dai, D., Cui, J., Li, M., Xu, Y., Xu, M., Du, Y., Jiang, N., Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD. Carbon, 129, 456–461, 2018.

      18. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., The chemistry of graphene oxide. Chem. Soc. Rev., 39, 228–240, 2010.

      20. Moon, I.K., Lee, J., Ruoff, R.S., Lee, H., Reduced graphene oxide by chemical graphitization. Nat. Commun., 1, 73, 2010.

      21. Neelgund, G.M., Hrehorova, E., Joyce, M., Bliznyuk, V., Synthesis and characterization of polyaniline derivative and silver nanoparticle composites. Polym. Int., 57, 1083–1089, 2008.

      22. Bourlinos, A.B., Gournis, D., Petridis, D., Szabó, T., Szeri, A., Dékány, I., Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir, 19, 6050–6055, 2003.

      23. Wang, S., Chia, P.J., Chua, L.L., Zhao, L.H., Png, R.Q., Sivaramakrishnan, S., Zhou, M., Goh, R.G.S., Friend, R.H.A., Wee, T.S., Bandprocessable graphene nanosheets. Adv. Mater., 20, 3440–3446, 2008.

      24. Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F., Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater., 20, 4490–4493, 2008.

      25. Chen, W., Yan, L., Bangal, P.R., Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 48, 1146–1152, 2010.

      26. Dubin, S., Gilje, S., Wang, K., Tung, V.C., Cha, K., Hall, A.S., Farrar, J., Varshneya, R., Yang, Y., Kaner, R.B., A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 4, 3845–3852, 2010.

      27. Yang, S., Feng, X., Ivanovici, S., Müllen, K., Fabrication of graphene–performance anode materials for lithium storage. Angew. Chem. Int. Ed., 49, 8408–8411, 2010.

      28. Muszynski, R., Seger, B., Kamat, P.V., Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C, 112, 5263–5266, 2008.

      29. Wang, H., Robinson, J.T., Diankov, G., Dai, H., Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc., 132, 3270–3271, 2010.

      30. Cao, A., Liu, Z., Chu, S., Wu, M., Ye, Z., Cai, Z., Chang, Y., Wang, S., Gong, Q., Liu, Y., A facile one-step method to produce graphene¨CCdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater., 22, 103–106, 2010.

      31. Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Hu, D., Wang, C., Saraf, L.V., Zhang, J., Self-assembled TiO2¨Cgraphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 3, 907–914, 2009.

      32. Xu, C., Sun, J., Gao, L., Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J. Mater. Chem., 21, 11253–11258, 2011.

      34. Salavagione, H.J., Gomez, M.A., Martinez, G., Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules, 42, 6331–6334, 2009.

      35. Bandosz, T.J. and Petit, C., MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts. Adsorption, 17, 5–16, 2011.

      36. Levasseur, B., Petit, C., Bandosz, T.J., Reactive adsorption of NO2 on copper-based metalorganic framework composites. ACS Appl. Mater. Interfaces, 2, 3606–3613, 2010.

      37. Musyoka, N.M., Ren, J., Langmi, H.W., North, B.C., Mathe, M., Bessarabov, D., Synthesis of rGO/Zr-MOF composite for hydrogen storage application. J. Alloys Compd., 724, 450–455, 2017.

      38. Zhang, Q., Qiao, Y., Hao, F., Zhang, L., Wu, S., Li, Y., Li, J., Song, X.M., Fabrication of a Biocompatible and Conductive Platform Based on a Single-Stranded DNA/Graphene Nanocomposite for Direct Electrochemistry and Electrocatalysis. Chem.—Eur. J., 16, 8133–8139, 2010.

      39. Arvand, M. and Dehsaraei, M., Amperometric determination of diazinon by gold nanorods/ds-DNA/graphene oxide sandwich-modified electrode. Ionics, 24, 2445–2454, 2018.

      40. Zou, Y. and Wang, Y., Sn@ CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano, 5, 8108–8114, 2011.

      41. Chen, P., Xiao, T.Y., Qian, Y.H., Li, S.S., Yu, S.H., A Nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater., 25, 3192–3196, 2013.

      42. Harik, V., Trends in Nanoscale Mechanics: Mechanics of Carbon Nanotubes, Graphene, Nanocomposites and Molecular Dynamics, Springer, 2014.