Continuous Functions. Jacques Simon. Читать онлайн. Newlib. NEWLIB.NET

Автор: Jacques Simon
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Математика
Год издания: 0
isbn: 9781119777274
Скачать книгу
E separated semi-normed space
ǁ ǁE;ν semi-norm of E of index ν
f06_Inline_xvi_8.jpg set indexing the semi-norms of E
f06_Inline_xvi_9.jpg equality of families of semi-norms
f06_Inline_xvi_10.jpg topological equality
f06_Inline_xvi_11.jpg topological equality up to an isomorphism
f06_Inline_xvi_12.jpg topological inclusion
E-weak space E endowed with pointwise convergence in Eʹ
Eʹ dual of E
Ed Euclidean product E × … × E
E1 × … × E product of spaces
Ê sequential completion of E
Ů interior of the set U
Ū closure of U
boundary of U
[u, υ] closed segment: [u, υ] = {tu + (1 − t)υ : 0 ≤ t ≤ 1}
ℒ(E; F) space of continuous linear mappings
(E1 × … × E; F) space of continuous multilinear mappings

      POINTS AND SETS IN ℝd

d Euclidean space: ℝd = {x = (x1, …, xd) : ∀i, xi ∈ ℝ}
|x| Euclidean norm: f06_Inline_xvii_1.jpg
x · y Euclidean scalar product: x · y = x1y1 + … + xdyd
ei ith basis vector of ℝd
Ω domain on which a function ƒ is defined
Ω D domain of f ⋄ μ: ΩD = {x : x + D ⊂ Ω}, and its figure
Ω1/n Ω with a neighborhood of the boundary of size 1/n removed
f06_Inline_xvii_2.jpg Ω1/n truncated by f06_Inline_xvii_3.jpg
f06_Inline_xvii_4.jpg part of Ω1/n which is star-shaped with respect to a, and its figure
f06_Inline_xvii_5.jpg potato-shaped set: f06_Inline_xvii_6.jpg
κn crown-shaped set: f06_Inline_xvii_7.jpg
ω subset of ℝd
|ω| Lebesgue measure of the open set ω
σ negligible subset of ℝd
B(x, r) closed ball B(x, r) = {y ∈ ℝd : |yx| ≤ r}
(x, r) open ball (x, r) = {y ∈ ℝd : |yx| < r}
υd measure of the unit ball: υd = |Ḃ(0, 1)|
C(x, p, r) open crown C(x, p, r) = {y ∈ ℝd : ρ < |yx| < r}
S(x,r) sphere: S(x, r) = {y ∈ ℝd : |yx| = r}
Δs,n closed cube of edge length 2−n centered at 2−ns
P(υ1,…, υd) open parallelepiped with edges υ1, …, υd

      OTHER SETS

ℕ* set of natural numbers: ℕ* = {0, 1, 2,…}
set of non-zero natural numbers: ℕ = {1, 2,…}
set of integers: ℤ = {…,−2, −1,0, 1, 2,…}

e-mail: [email protected]