Electromagnetic Simulation Using the FDTD Method with Python. Dennis M. Sullivan. Читать онлайн. Newlib. NEWLIB.NET

Автор: Dennis M. Sullivan
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119565840
Скачать книгу
medium """ import numpy as np from math import exp from matplotlib import pyplot as plt ke = 200 ex = np.zeros(ke) hy = np.zeros(ke) t0 = 40 spread = 12 boundary_low = [0, 0] boundary_high = [0, 0] # Create Dielectric Profile cb = np.ones(ke) cb = 0.5 * cb cb_start = 100 epsilon = 4 cb[cb_start:] = 0.5 / epsilon nsteps = 440 # Dictionary to keep track of desired points for plotting plotting_points = [ {'num_steps': 100, 'data_to_plot': None, 'label': ''}, {'num_steps': 220, 'data_to_plot': None, 'label': ''}, {'num_steps': 320, 'data_to_plot': None, 'label': ''}, {'num_steps': 440, 'data_to_plot': None, 'label': 'FDTD cells'} ] # Main FDTD Loop for time_step in range(1, nsteps + 1): # Calculate the Ex field for k in range(1, ke): ex[k] = ex[k] + cb[k] * (hy[k - 1] - hy[k]) # Put a Gaussian pulse at the low end pulse = exp(-0.5 * ((t0 - time_step) / spread) ** 2) ex[5] = pulse + ex[5] # Absorbing Boundary Conditions ex[0] = boundary_low.pop(0) boundary_low.append(ex[1]) ex[ke - 1] = boundary_high.pop(0) boundary_high.append(ex[ke - 2]) # Calculate the Hy field for k in range(ke - 1): hy[k] = hy[k] + 0.5 * (ex[k] - ex[k + 1]) # Save data at certain points for later plotting for plotting_point in plotting_points: if time_step == plotting_point['num_steps']: plotting_point['data_to_plot'] = np.copy(ex) # Plot the outputs as shown in Fig. 1.4 plt.rcParams['font.size'] = 12 fig = plt.figure(figsize=(8, 7)) def plot_e_field(data, timestep, epsilon, cb, label): """Plot of E field at a single time step""" plt.plot(data, color='k', linewidth=1) plt.ylabel('E$_x$', fontsize='14') plt.xticks(np.arange(0, 199, step=20)) plt.xlim(0, 199) plt.yticks(np.arange(-0.5, 1.2, step=0.5)) plt.ylim(-0.5, 1.2) plt.text(70, 0.5, 'T = {}'.format(timestep), horizontalalignment='center') plt.plot((0.5 / cb - 1) / 3, 'k‐‐', linewidth=0.75) # The math on cb above is just for scaling plt.text(170, 0.5, 'Eps = {}'.format(epsilon), horizontalalignment='center') plt.xlabel('{}'.format(label)) # Plot the E field at each of the time steps saved earlier for subplot_num, plotting_point in enumerate(plotting_points): ax = fig.add_subplot(4, 1, subplot_num + 1) plot_e_field(plotting_point['data_to_plot'], plotting_point['num_steps'], epsilon, cb, plotting_point['label']) plt.subplots_adjust(bottom=0.1, hspace=0.45) plt.show() """ fd3d_1_4.py: 1D FDTD Simulation of a sinusoidal wave hitting a dielectric medium """ import numpy as np from math import pi, sin from matplotlib import pyplot as plt ke = 200 ex = np.zeros(ke) hy = np.zeros(ke) ddx = 0.01 # Cell size dt = ddx / 6e8 # Time step size freq_in = 700e6 boundary_low = [0, 0] boundary_high = [0, 0] # Create Dielectric Profile cb = np.ones(ke) cb = 0.5 * cb cb_start = 100 epsilon = 4 cb[cb_start:] = 0.5 / epsilon nsteps = 425 # Dictionary to keep track of desired points for plotting plotting_points = [ {'num_steps': 150, 'data_to_plot': None, 'label': ''}, {'num_steps': 425, 'data_to_plot': None, 'label': 'FDTD cells'} ] # Main FDTD Loop for time_step in range(1, nsteps + 1): # Calculate the Ex field for k in range(1, ke): ex[k] = ex[k] + cb[k] * (hy[k - 1] - hy[k]) # Put a sinusoidal at the low end pulse = sin(2 * pi * freq_in * dt * time_step) ex[5] = pulse + ex[5] # Absorbing Boundary Conditions ex[0] = boundary_low.pop(0) boundary_low.append(ex[1]) ex[ke - 1] = boundary_high.pop(0) boundary_high.append(ex[ke - 2]) # Calculate the Hy field for k in range(ke - 1): hy[k] = hy[k] + 0.5 * (ex[k] - ex[k + 1]) # Save data at certain points for later plotting for plotting_point in plotting_points: if time_step == plotting_point['num_steps']: plotting_point['data_to_plot'] = np.copy(ex) # Plot the outputs in Fig. 1.5 plt.rcParams['font.size'] = 12 fig = plt.figure(figsize=(8, 3.5)) def plot_e_field(data, timestep, epsilon, cb, label): """Plot of E field at a single time step""" plt.plot(data, color='k', linewidth=1) plt.ylabel('E$_x$', fontsize='14') plt.xticks(np.arange(0, 199, step=20)) plt.xlim(0, 199) plt.yticks(np.arange(-1, 1.2, step=1)) plt.ylim(-1.2, 1.2) plt.text(50, 0.5, 'T = {}'.format(timestep), horizontalalignment='center') plt.plot((0.5 / cb - 1) / 3, 'k‐‐', linewidth=0.75) # The math on cb above is just for scaling plt.text(170, 0.5, 'Eps = {}'.format(epsilon), horizontalalignment='center') plt.xlabel('{}'.format(label)) # Plot the E field at each of the time steps saved earlier for subplot_num, plotting_point in enumerate(plotting_points): ax = fig.add_subplot(2, 1, subplot_num + 1) plot_e_field(plotting_point['data_to_plot'], plotting_point['num_steps'], epsilon, cb, plotting_point['label']) plt.subplots_adjust(bottom=0.2, hspace=0.45) plt.show() """ fd3d_1_5.py: 1D FDTD Simulation of a sinusoid wave hitting a lossy dielectric """ import numpy as np from math import pi, sin from matplotlib import pyplot as plt ke = 200 ex = np.zeros(ke) hy = np.zeros(ke) ddx = 0.01 # Cell size dt = ddx / 6e8 # Time step size freq_in = 700e6 boundary_low = [0, 0] boundary_high = [0, 0] # Create Dielectric Profile epsz = 8.854e-12 epsilon = 4 sigma = 0.04 ca = np.ones(ke) cb = np.ones(ke) * 0.5 cb_start = 100 eaf = dt * sigma / (2 * epsz * epsilon) ca[cb_start:] = (1 - eaf) / (1 + eaf) cb[cb_start:] = 0.5 / (epsilon * (1 + eaf)) nsteps = 500 # Main FDTD Loop for time_step in range(1, nsteps + 1): # Calculate the Ex field for k in range(1, ke): ex[k] = ca[k] * ex[k] + cb[k] * (hy[k - 1] - hy[k]) # Put a sinusoidal at the low end pulse = sin(2 * pi * freq_in * dt * time_step) ex[5] = pulse + ex[5] # Absorbing Boundary Conditions ex[0] = boundary_low.pop(0) boundary_low.append(ex[1]) ex[ke - 1] = boundary_high.pop(0) boundary_high.append(ex[ke - 2]) # Calculate the Hy field for k in range(ke - 1): hy[k] = hy[k] + 0.5 * (ex[k] - ex[k + 1]) # Plot the outputs in Fig. 1.6 plt.rcParams['font.size'] = 12 plt.figure(figsize=(8, 2.25)) plt.plot(ex, color='k', linewidth=1) plt.ylabel('E$_x$', fontsize='14') plt.xticks(np.arange(0, 199, step=20)) plt.xlim(0, 199) plt.yticks(np.arange(-1, 1.2, step=1)) plt.ylim(-1.2, 1.2) plt.text(50, 0.5, 'T = {}'.format(time_step), horizontalalignment='center') plt.plot((0.5 / cb - 1) / 3, 'k‐‐', linewidth=0.75) # The math on cb is just for scaling plt.text(170, 0.5, 'Eps = {}'.format(epsilon), horizontalalignment='center') plt.text(170, -0.5, 'Cond = {}'.format(sigma), horizontalalignment='center') plt.xlabel('FDTD cells') plt.subplots_adjust(bottom=0.25, hspace=0.45) plt.show()

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SGgUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAA8cAVoAAxsl RxwCAAACAAAAOEJJTQQlAAAAAAAQzc/6fajHvgkFcHaurwXDTjhCSU0EOgAAAAAA5QAAABAAAAAB AAAAAAALcHJpbnRPdXRwdXQAAAAFAAAAAFBzdFNib29sAQAAAABJbnRlZW51bQAAAABJbnRlAAAA AENscm0AAAAPcHJpbnRTaXh0ZWVuQml0Ym9vbAAAAAALcHJpbnRlck5hbWVURVhUAAAAAQAAAAAA D3ByaW50UHJvb2ZTZXR1cE9iamMAAAAMAFAAcgBvAG8AZgAgAFMAZQB0AHUAcAAAAAAACnByb29m U2V0dXAAAAABAAAAAEJsdG5lbnVtAAAADGJ1aWx0aW5Qcm9vZgAAAAlwcm9vZkNNWUsAOEJJTQQ7 AAAAAAItAAAAEAAAAAEAAAAAABJwcmludE91dHB1dE9wdGlvbnMAAAAXAAAAAENwdG5ib29sAAAA AABDbGJyYm9vbAAAAAAAUmdzTWJvb2wAAAAAAENybkNib29sAAAAAABDbnRDYm9vbAAAAAAATGJs c2Jvb2wAAAAAAE5ndHZib29sAAAAAABFbWxEYm9vbAAAAAAASW50cmJvb2wAAAAAAEJja2dPYmpj AAAAAQAAAAAAAFJHQkMAAAADAAAAAFJkICBkb3ViQG/gAAAAAAAAAAAAR3