See more Aerospace Series titles at www.wiley.com
To the loving memory of my daughter, Manya (24.1.2000 ‐ 9.7.2019)
This edition first published 2021
© 2021 John Wiley & Sons Ltd.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.
The right of Ashish Tewari to be identified as the authors of this work has been asserted in accordance with law.
Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,West Sussex, PO19 8SQ, UK
Editorial Office
The Atrium, Southern Gate, Chichester,West Sussex, PO19 8SQ, UK
For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.
Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats.
Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
Library of Congress Cataloging‐in‐Publication Data
Names: Tewari, Ashish, author.
Title: Foundations of space dynamics / Ashish Tewari.
Description: First edition. | Hoboken, NJ : Wiley, [2020] | Series:
Aerospace series | Includes bibliographical references and index.
Identifiers: LCCN 2020033397 (print) | LCCN 2020033398 (ebook) | ISBN
9781119455349 (paperback) | ISBN 9781119455332 (adobe pdf) | ISBN
9781119455325 (epub) | ISBN 9781119455301 (obook)
Subjects: LCSH: Aerospace engineering. | Astrodynamics. | Orbital
mechanics.
Classification: LCC TL545 .T385 2020 (print) | LCC TL545 (ebook) | DDC
629.4/11–dc23
LC record available at https://lccn.loc.gov/2020033397
LC ebook record available at https://lccn.loc.gov/2020033398
Cover Design: Wiley
Cover Image: © Philip Wallick/Getty Images
To the loving memory of my daughter, Manya (24.1.2000 ‐ 9.7.2019)
Preface
Foundations of Space Dynamics is written as a textbook for students, as well as a ready reference covering the essential concepts for practicing engineers and researchers. It introduces a reader to the basic aspects of both orbital mechanics and attitude dynamics. While many good textbooks are available on orbital mechanics and attitude dynamics, there is a need for a direct, concise, yet rigorous treatment of both the topics in a single textbook. Important derivations from basic principles are highlighted, while offering insights into the physical principles which can often be hidden by mathematical details. While the emphasis is on analytical derivations, the essential computational tools are presented wherever required, such as the iterative root‐finding methods and the numerical integration of ordinary differential equations.
The objective of this book is to provide a physically insightful presentation of space dynamics. The usage of simple ideas and numerical tools to illustrate advanced concepts is inspired by the work of the original masters (Newton, Liebnitz, Laplace, Gauss, etc.), and is combined with the application and terminology of modern space dynamics.
A student of space dynamics in the past generally possessed a strong background in analytical mechanics, often reinforced by such classical treatises as those by Whittaker, Lanczos, Truesdell, and Mach. Today, the exposure to analytical dynamics is often based upon a single undergraduate course. This book therefore includes a basic introduction to analytical mechanics by both Newtonian and Lagrangian approaches.
The contents of the textbook are arranged such that they may be covered in two successive courses: Space Dynamics I could focus on Chaps. 1–7 and 11, while the following course, Space Dynamics II, could cover Chaps. 8–10 and 12, supplemented by a semester project exploring a specific research topic. However, the arrangement of the chapters in the book offers sufficient flexibility for them to be covered in a single comprehensive course, if so required. There are a multitude of exercises at the end of the chapters which can serve as homework assignments and quiz problems. Solutions to selected exercises is also provided.
I would like to thank the editorial and production staff of Wiley, Chichester, for their constructive suggestions and valuable insights during the preparation of the manuscript.
Ashish Tewari
May 2020
1 Introduction
This chapter gives an introduction to the basic features of space flight, which is predominated by the quiet space environment and gravity. The essential differences with atmospheric flight are discussed, and the important time scales and frames of reference for space flight are described. Topics in space dynamics are classified as the translational motion (orbital mechanics) and rotational motion (attitude dynamics) of a rigid spacecraft. Classification of the various practical spacecraft is given according to their missions.
1.1 Space Flight
Space flight refers to motion outside the confines of a planetary atmosphere. It is different from atmospheric flight in that no assistance can be derived from the atmospheric forces to support a vehicle, and no benefit of planetary oxygen can be utilized for propulsion. Apart from these major disadvantages, space flight has the advantage of experiencing no (or little) drag due to the resistance of the atmosphere; hence a spacecraft can achieve a much higher flight velocity