Так, например, пара элементов p12 = 2000 и p21 = 3000 соединённых малой двухсторонней фигурной стрелкой и имеющих светло-серое тонирование соответствующих ячеек балансовой матрицы, последовательно читается следующим образом:
– Первый агент с индексом i = 1 отчуждает в пользу второго агента с индексом k = 2 2000 единиц (штук) произведённого им продукта с индексом j = 1, так как согласно матричной таблицы рисунка 9 только первый агент производит продукты с индексом j = 1 (и только этот продукт). При этом второй агент с индексом i = 2 отчуждает в пользу первого агента k = 1 3000 единиц (штук) произведённого им продукта с индексом j = 2, так как согласно матричной таблицы рисунка 9 только второй агент производит продукты с индексом j = 2 (и только этот продукт).
Следующая пара элементов p13 = 2000 и p31 = 4000, соединённых длинной двухсторонней фигурной стрелкой, последовательно читается следующим образом:
– Первый агент с индексом i = 1 отчуждает в пользу третьего агента с индексом k = 3 2000 единиц (штук) произведённого им продукта с индексом j = 1, так как согласно матричной таблицы рисунка 9 только первый агент производит продукты с индексом j = 1 (и только этот продукт). При этом третий агент i = 3 агент отчуждает в пользу первого агента k = 1 4000 единиц (штук) произведённого им продукта с индексом j = 3, так как согласно матричной таблицы рисунка 9 только третий агент производит продукты с индексом j = 3 (и только этот продукт).
Наконец, пара элементов p23 = 3000 и p32 = 4000, соединённых малой двухсторонней фигурной стрелкой и имеющих тёмное тонирование соответствующих ячеек балансовой матрицы, последовательно читается следующим образом:
– Второй агент с индексом i = 2 отчуждает в пользу третьего агента с индексом k = 3 3000 единиц (штук) произведённого им продукта с индексом j = 2, так как согласно матричной таблицы рисунка 9 только второй агент производит продукты с индексом j = 2 (и только этот продукт). При этом третий агент i = 3 агент отчуждает в пользу второго агента k = 2 4000 единиц (штук) произведённого им продукта с индексом j = 3, так как согласно матричной таблицы рисунка 9 только третий агент производит продукты с индексом j = 3 (и только этот продукт).
Таким образом имеем три «меновых» отношения для всех трёх продуктов производимых и потребляемых в рассматриваемом иллюстративном примере условного общества. Эти три меновых отношения представлены в таблице рисунка 11.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.