How to Build a Car. Adrian Newey. Читать онлайн. Newlib. NEWLIB.NET

Автор: Adrian Newey
Издательство: HarperCollins
Серия:
Жанр произведения: Биографии и Мемуары
Год издания: 0
isbn: 9780008196813
Скачать книгу
I thought I was revising in the lead-up but in fact I was listening to music while reading notes. I learnt the words to ELO songs, not my material.

      Of the unis I considered, Southampton was the one calling out to me. I knew from reading Autosport that the racing teams Brabham and March used the wind tunnel in Southampton to develop their cars, and I figured that being a Southampton student might give me a chance to ingratiate myself with them.

      The course itself was Aeronautics and Astronautics, and I didn’t – and still don’t, really – have an interest in aircraft. By rights I should have been aiming for a mechanical engineering degree, and if I’d wanted to end up in the automotive industry working on production-line cars then that’s what I’d have done.

      But I didn’t want a career in the automotive industry. I wanted a career in racing. My thinking was that an Aeronautics course would teach me aerodynamics and about the design of lightweight structures, about materials and control theory. I decided that because of that parallel technology with aircraft, and because of the lure of the wind tunnel, I’d aim for Southampton.

      I worked hard to get into Southampton and I succeeded. But the problem was that even though I’d apparently got the highest OND mark in the country, the maths content of the course was the same maths I’d learnt at advanced Maths O-level. At Southampton, all the lecturers assumed that students were educated to A-level standard.

      With engineering, and particularly aeronautical engineering, being so maths orientated, I was woefully out of my depth and struggling to keep up with the lecturers, who would simply skip through the derivations of equations, assuming we all knew what they considered to be the basics.

      At weekends I studied. Not socialising, not tinkering with ‘the special’, not even gallivanting around on my motorbike, just trying to get myself up to snuff with my maths. But however hard I worked, I always seemed to be two steps behind everybody else. To make matters worse, I shared Halls with a bunch of ’ologist students who did nothing but party – not exactly the perfect environment for the kind of crash-course study I needed. By Christmas I was seriously thinking of throwing in the towel.

      Finally, in desperation, I did two things: first, I returned to see Ian Reed, who by now was at March, a production racing car company making Formula One and Formula Two cars, a sizeable outfit by the standards of the day.

      ‘Look,’ said Ian, ‘if you want a job as a draughtsman then it’s yours, but you’ll only ever be a draughtsman. If you want to be a proper design engineer, you need to get your degree. What I suggest you do is get your head down and keep battling.’

      Second, my tutor, the late Ken Burgin, who was always very supportive, noted that I was struggling and helped me with extra tutorials. In addition, he instilled in me the need to keep going. That was the mantra. Ken and Ian both said it: get your head down, Adrian; keep battling.

      So I did. And although I never really caught up with the maths – to this day, it’s my Achilles’ heel – I did manage to overcome the problem by memorising mathematical derivations parrot fashion. Put simply, I never understood them, but I knew how to fake them. It hasn’t held me back in the long term and, in a perverse way, it instilled in me a determination that when the going gets tough you need to get your head down and find a way through it. I also formed the ability to really and truly concentrate when studying, which has certainly helped me in my career, though I have to admit, not socially. Particularly at race weekends I tend to suffer from tunnel vision, not seeing left or right, only what is right in front of me.

      The second year at Southampton was a bit more interesting, geared as it was towards the more practical side of things, which was my strength. The lectures were no longer all about background theory; we started to learn about applied engineering as well as gearing up for what would prove to be my favourite element of the course: the final-year project.

      Fate, luck and chance were also playing their part. I started at Southampton in 1977 and graduated in 1980. Those three years just happened to be a time of seismic change in Formula One.

      Which is where it starts to get really interesting.

      To make a racing car accelerate and achieve a higher top speed you need more power, less weight and less aerodynamic drag. And if that sounds like a simple set of goals, it probably would be, if not for the troublesome mechanics of cornering. A light car is able to change direction quickly, but it’s a misconception that a heavier car offers more grip. Tyres behave in a non-linear way, which means that if the load on the tyres is doubled during cornering they don’t offer twice the cornering force. To corner at the same speed, a car that weighs twice as much would need twice the grip and would accelerate more slowly.

      This is where downforce comes in. Downforce is what we call the pressure that pushes the car downwards, effectively suckering it to the track. And because the generation of downforce is something that happens as a result of the aerodynamic shaping of the car, you can increase grip without it involving a significant increase in weight. In other words, you get to have your cake and eat it: more grip without a loss of acceleration.

      Thus, the aim of the chassis designer is to:

       One: ensure that the tyres are presented to the ground in an even and consistent manner through the braking, cornering and acceleration phases.

       Two: ensure the car is as light as possible.

       Three: ensure that the car generates as little drag as possible.

       Four: ensure that the car is generating as much downforce as possible in a balanced manner throughout the phases of the corner.

      Downforce was a still relatively poorly researched area in motorsport in 1977. Having sat out the 1940s and 1950s altogether, it then played a small part in the 1960s when teams began fitting spoilers to sports cars, typically at Le Mans where the inherent lift of the cars’ body shapes had led to drivers complaining of instability on the long, fast straights and kinks of that circuit. With the introduction of a very large rear wing by Jim Hall of Chaparral in 1967, cars started generating significant downforce for the first time, having literally looked to the skies for inspiration – to aircraft.

      An aeroplane lifts because the contours of its wing cause air to flow at different speeds across the two sides, low pressure on the topside, high on the other, with the wing moving in the direction of the low pressure and giving us what we call ‘positive lift’ as a result.

      The wing on a racing car works the same way, but in reverse: ‘negative lift’, or ‘downforce’, pressing the car into the ground and hence allowing the tyres to generate more grip.

      With this blindingly simple solution established, wings on racing cars became a common feature of the 1970s, with teams continually seeking to create more downforce, but with little further progress, until 1977.

      To explain what happened in 1977, please first allow me to offer a brief lesson in aerodynamics. The pressure difference across the surface of the wing creates a distortion of the flow field as it passes through the air, known as circulation. In the case of a racing car, this means that air behind the car is thrown upwards, creating a rooster tail of air behind the car that can clearly be seen when Formula One cars run in the wet. However, the air on the high-pressure side of the wing is also able to leak around the tips of the wing, reducing the low pressure on the suction side and hence reducing the wing’s efficiency. This tip leakage, when combined with the forward motion of the vehicle, sets up a spiral, tornado-like structure known as the tip vortex. These tip vortices can be seen spilling from the rear wing when a Formula One car runs on a damp day or indeed on the wings of aircraft as they come in to land in the same conditions.

image

      Figure 2: How a wing works and how it forms a vortex at its tips.

      Aircraft (and birds) reduce this loss of efficiency of their wings by increasing span, exemplified by sailplanes, which have very