● Если x увеличивается (20, 40, 500…), y скукоживается до микроскопических чисел (1/400,1/16 000,1/250 000…).
● Когда x принимает отрицательные значения (–2, –5, –10), y остается положительным. Он никогда не спускается ниже нуля.
● Ни одна из величин не может быть равна нулю.
Окей, возможно, это не самая сочная сюжетная линия, но такие умственные упражнения показывают разницу между математиком-новичком (он видит парализующий поток бессмысленных символов) и опытным математиком (он видит нечто слаженное и дружелюбное). Графики наполняют безжизненные уравнения ощущением движения.
Есть психологический феномен, известный под неприятным названием чанкинг. Это не просто способ очистить организм после чрезмерного количества пива[21], но и мощная ментальная техника, необходимая математикам. Очередная стратегия чтения математических текстов.
Чанкинг означает, что мы интерпретируем набор разрозненных, ускользающих деталей как единое целое. Приведенное выше уравнение – хороший пример. Умелый чанкер игнорирует мелочи слева. Там x или y, 5 или 6, плюс или минус? Не знаю, без разницы. Вместо этого вы видите просто два множителя, формирующих скелет уравнения: чанк умножить на чанк равно нулю.
Если вы знакомы с таблицей умножения, вы знаете, что ноль – это своеобразный результат.
6 × 5? Не ноль.
18 × 307? Не ноль.
19,91632 × 4 600 000 000 000? Нет смысла открывать калькулятор на вашем смартфоне: это тоже не ноль.
Ноль – единственное в своем роде число в мире умножения. В отличие от числа, скажем, 6, которое можно разложить на множители различными способами (3 × 2, 1,5 × 4, 1200 × 0,005…), ноль – особая, своенравная величина. На самом деле есть всего один способ получить ноль, перемножая два числа: если одно из них само по себе равно нулю.
Здесь окупается наша стратегия дробления: один из множителей равен нулю. Таким образом, x равен либо 5, либо 7.
Уравнение решено.
Чанкинг прочищает не только наши желудки, но и наши умы. Он делает мир удобоваримым. Чем больше вы узнаете, тем агрессивнее вы чанкаете. Старшеклассник может прочанкать целую строку алгебраических символов и понять, что это формула площади трапеции. Старшекурсник может прочанкать несколько дремучих строчек вычислений и увидеть, что это формула объема твердого тела вращения. Аспирант прочанкает полстраницы грозных греческих букв и сделает вывод, что речь идет о вычислении хаусдорфовой размерности множества. Чем выше ваш уровень, тем больше вы узнаете. Что такое трапеции? Как ведут себя интегралы? Что курил Хаусдорф[22] и где бы нам такое раздобыть?
Но мы не изучаем детали ради деталей. Мы узнаем детали, чтобы позже их проигнорировать и сосредоточиться на более общей картине.
Поменяйте местами два символа. Что произойдет?
Ну, с точки зрения новичка, ничего. Вы поменяли