И это лишь несколько примеров того, что в паре «таблички – живая история» первые доминируют.
Есть много причин, по которым компании с головой кидаются в использование данных. Не последнюю роль играет появление сложнейших технологий, позволяющих очень быстро обрабатывать информацию и делать из нее выводы. Но есть и другие объяснения:
● данных очень много;
● в отличие от чувств, они не такие запутанные;
● данные точны, чувства неявны;
● данные – универсальный язык, понятный всем и везде;
● как показывает пример Google и Facebook с их мощнейшими предиктивными алгоритмами, использование данных приносит прибыль;
● данные можно очень эффектно визуализировать.
Все это, конечно, не означает, что данные – это плохо. Неправильно было бы считать, что таблички – зло, а история – благо. Обе составляющие жизненно необходимы бизнесу. Более того, именно способность находить баланс между ними выводит компании в лидеры.
Проблема в том, что слишком велик соблазн фокусироваться только на данных, и баланс сразу смещается. Ведь данные помогают обосновать наши решения, просчитать и снизить риски. Благодаря им мы постигаем поведение потребителей и на основе этого разрабатываем наши продукты и услуги. При помощи данных компании выживают и зарабатывают деньги.
Но это заставляет нас ошибочно полагать, будто данные – все, что требуется для успеха. И мы теряем критичные для процветания бизнеса гибкость, вдохновение, нестандартность мышления. Данные должны и могут быть наполнены смыслом, и использовать их нужно с умом. Нам следует прибегать к ним не только чтобы выразить нечто в цифрах, повысить эффективность и производительность. Но и для того, чтобы задуматься над другими, общечеловеческими вопросами. Что результаты опроса сотрудников говорят об их морали и готовности оставаться в компании еще длительное время? Какие модели поведения поставщиков выявляют применяемые нами алгоритмы и как эти модели связаны с текущими проблемами и вспыхивающими время от времени конфликтами?
В компании, полагающейся не только на данные, но задумывающейся и о смыслах, корпоративные политики и программы не должны быть основаны на цифрах и могут даже вступать с ними в противоречие. Например, статистика требует от компании сократить персонал на 10 %, чтобы сохранить показатели прибыли. Но такой шаг деморализует сотрудников. Более сознательным решением будет снизить другие расходы, но сохранить рабочие места и позитивный настрой в коллективе.
Конечно, это очень простой пример. Но он хорошо показывает необходимость в равной степени ориентироваться и на математику, и на здравый смысл. Чтобы этому научиться, для начала рассмотрим, что мы понимаем под математикой и смыслом, в чем их различие и когда они нужны.
Типы данных: математика и смыслы
Если говорить