Caries Management - Science and Clinical Practice. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: Ingram
Серия:
Жанр произведения: Медицина
Год издания: 0
isbn: 9783131693815
Скачать книгу
and 3.18 and for numerous valuable discussions. I also would like to thank Dr. Hao Yu for preparation and imaging of Figs. 3.3, 3.4, and 3.14 and PD Dr. Áine M. Lennon for providing Fig. 3.21.

      REFERENCES

      1. Thylstrup A, Bruun C, Holmen L. In vivo caries models—mechanisms for caries initiation and arrestment. Adv Dent Res 1994; 8(2):144–157

      2. Ekstrand KR, Kuzmina I, Bjørndal L, Thylstrup A. Relationship between external and histologic features of progressive stages of caries in the occlusal fossa. Caries Res 1995;29(4):243–250

      3. Ekstrand KR, Martignon S, Ricketts DJ, Qvist V. Detection and activity assessment of primary coronal caries lesions: a methodologic study. Oper Dent 2007;32(3):225–235

      4. Ekstrand KR, Ricketts DN, Kidd EAM, Qvist V, Schou S. Detection, diagnosing, monitoring and logical treatment of occlusal caries in relation to lesion activity and severity: an in vivo examination with histological validation. Caries Res 1998;32(4):247–254

      5. Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molars in relation to stage of eruption. J Dent Res 1989;68(5):773–779

      6. Carvalho JC, Ekstrand KR, Thylstrup A. Results after 1 year of non-operative occlusal caries treatment of erupting permanent first molars. Community Dent Oral Epidemiol 1991;19(1):23–28

      7. Carvalho JC, Thylstrup A, Ekstrand KR. Results after 3 years of non-operative occlusal caries treatment of erupting permanent first molars. Community Dent Oral Epidemiol 1992;20(4): 187–192

      8. Nyvad B, Machiulskiene V, Baelum V. Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries Res 1999;33(4):252–260

      9. Hecht E. Optics. 3rd ed. Reading: Addison-Wesley; 1998

      10. Silverstone L. Structure of carious enamel, including the early lesion. Oral Sci Rev 1973;3:100–160

      11. Silverstone LM, Johnson NW, Hardie JM, Williams RAD. Enamel caries. In: Silverstone LM, Johnson NW, Hardie JM, Williams RAD, eds. Dental Caries: Aetiology, Pathology and Prevention. London: Macmillan; 1981:133–161

      12. Darling A. Studies of the early lesion of enamel caries. Br Dent J 1958;105:119–135

      13. Silverstone LM. Remineralization and enamel caries: significance of fluoride and effect on crystal diameter. In: Leach SA, Edgar WM, eds. Demineralization and Remineralization of Teeth. Oxford: IRL Press: 1983:185–205

      14. Shellis RP, Hallsworth AS, Kirkham J, Robinson C. Organic material and the optical properties of the dark zone in caries lesions of enamel. Eur J Oral Sci 2002;110(5):392–395

      15. Schroeder HE. Karies und Erosion. Pathobio Oral Struktur 1997; 3:95

      16. Meyer-Lueckel H, Paris S, Kielbassa AM. Surface layer erosion of natural caries lesions with phosphoric and hydrochloric acid gels in preparation for resin infiltration. Caries Res 2007;41(3): 223–230

      17. Buchalla W, Attin T, Schulte-Mönting J, Hellwig E. Fluoride uptake, retention, and remineralization efficacy of a highly concentrated fluoride solution on enamel lesions in situ. J Dent Res 2002;81(5):329–333

      18. Angmar B, Carlström D, Glas JE. Studies on the ultrastructure of dental enamel. IV. The mineralization of normal human enamel. J Ultrastruct Res 1963;8:12–23

      19. de Josselin de Jong E, ten Bosch JJ, Noordmans J. Optimised microcomputer-guided quantitative microradiography on dental mineralised tissue slices. Phys Med Biol 1987;32(7):887–899

      20. Arends J, Christoffersen J. The nature of early caries lesions in enamel. J Dent Res 1986;65(1):2–11

      21. Magalhães AC, Moron BM, Comar LP, Wiegand A, Buchalla W, Buzalaf MA. Comparison of cross-sectional hardness and transverse microradiography of artificial carious enamel lesions induced by different demineralising solutions and gels. Caries Res 2009;43(6):474–483

      22. Weatherell JA, Robinson C, Hallsworth AS. Microanalytical studies on single sections of enamel. In: Stack MV, Fearnhead RW, eds. Tooth Enamel II: Its Composition, Properties, and Fundamental Structure. Report of the Proceedings of a Second International Symposium on the Composition, Properties, and Fundamental Structure of Tooth Enamel, held at the London Hospital Medical College, 16/17 June 1969. Bristol: Wright and Sons; 1971:31–38

      23. Boyde A. The structure of developing mammalian dental enamel. In: Stack MV, Fearnhead RW, eds. Tooth Enamel: Its Composition, Properties, and Fundamental Structure: Bristol: Wright and Sons; 1965:163–167

      24. Meckel AH, Griebstein WJ, Neal RJ. Structure of mature human dental enamel as observed by electron microscopy. Arch Oral Biol 1965;10(5):775–783

      25. Johansen E. The nature of the carious lesion. Dent Clin North Am 1962;6:305–320

      26. Johnson NW. Some aspects of the ultrastructure of early human enamel caries seen with the electron microscope. Arch Oral Biol 1967;12(12):1505–1521

      27. Silverstone LM, Poole DF. Histologic and ultrastructural features of remineralized carious enamel. J Dent Res 1969;48(5):766–770

      28. Johnson NW. Transmission electron microscopy of early carious enamel. Caries Res 1967;1(4):356–369

      29. Johansen E. Comparison of the ultrastructure and chemical composition of sound and carious enamel from human teeth. In: Stack MV, Fearnhead RW, eds. Tooth Enamel: Its Composition, Properties, and Fundamental Structure. Bristol: Wright and Sons; 1965:177–181

      30. Johnson NW. Differences in the shape of human enamel crystallites after partial destruction by caries, EDTA and various acids. Arch Oral Biol 1966;11(12):1421–1424

      31. Almer JD, Stock SR. High energy X-ray scattering quantification of in situ-loading-related strain gradients spanning the dentino-enamel junction (DEJ) in bovine tooth specimens. J Biomech 2010;43(12):2294–2300

      32. Stock SR, Vieira AE, Delbem AC, Cannon ML, Xiao X, Carlo FD. Synchrotron microComputed Tomography of the mature bovine dentinoenamel junction. J Struct Biol 2008;161(2):162–171

      33. Tesch W, Eidelman N, Roschger P, Goldenberg F, Klaushofer K, Fratzl P. Graded microstructure and mechanical properties of human crown dentin. Calcif Tissue Int 2001;69(3):147–157

      34. Schulze KA, Balooch M, Balooch G, Marshall GW, Marshall SJ. Micro-Raman spectroscopic investigation of dental calcified tissues. J Biomed Mater Res A 2004;69(2):286–293

      35. Xu C, Yao X, Walker MP, Wang Y. Chemical/molecular structure of the dentin-enamel junction is dependent on the intratooth location. Calcif Tissue Int 2009;84(3):221–228

      36. Kamal AM, Okiji T, Kawashima N, Suda H. Defense responses of dentin/pulp complex to experimentally induced caries in rat molars: an immunohistochemical study on kinetics of pulpal Ia antigen-expressing cells and macrophages. J Endod 1997;23(2): 115–120

      37. Steinman RR. Physiologic activity of the pulp-dentin complex. Quintessence Int 1985;16(10):723–726

      38. Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ. Inflammation-regeneration interplay in the dentine-pulp complex. J Dent 2010;38(9):687–697

      39. Lee YL, Liu J, Clarkson BH, Lin CP, Godovikova V, Ritchie HH. Dentin-pulp complex responses to carious lesions. Caries Res 2006;4(3):254–264

      40. Larmas M, Kortelainen S, Bäckman T, Hietala EL, Pajari U. Odontoblast-mediated regulation of the progression of dentinal caries. Proc Finn Dent Soc 1992;88(Suppl