–the Arzela–Ascoli lemma (any bounded equicontinuous sequence of functions on [0,1] has a uniformly convergent subsequence) (cf. Simpson 1998),
–every countable vector space has a basis (cf. Friedman, Simpson, Smith 1983),
–every countable commutative ring has a maximal ideal (cf. Friedman, Simpson, Smith 1983) and
–every countable Abelian group has a unique divisible closure (cf. Friedman, Simpson, Smith 1983).
And again, if S is any of those theorems then RCA0 + S is equivalent to ACA0.
What is the meaning of those results? First of all they indicate how much of
In mathematical practice, we encounter often the following situation: Assume that certain theorem τ can be proved in set theory. The natural question is now: Can τ be proved in an elementary way? Observe that if τ can be classified in the hierarchy of subsystems of A
Results of reverse mathematics have also interesting mathematical, and not only logical, applications. As an example can serve here Cauchy–Peano theorem on the existence of solutions of ordinary differential equations. Since it is equivalent to WKL0 over RCA0 and since the structure (No,Rec,∈) is not a model of WKL0,←19 | 20→we get that there exists a differential equation y ′ = f (x, y), where f is a recursive continuous function, such that it has no recursive solution.
Observe that not every mathematical theorem can be classified in Friedman’s hierarchy of subsystems of
Add also that there are sentences which are unprovable in the full system
To indicate the connections of reverse mathematics with Hilbert’s program we must recall some results. In the early 1980s, L.Harrington and Z.Ratajczyk proved a theorem on conservativeness of WKL0 (none of the mpublished it; the proof can be found in Simpson 1998).
Theorem 1 If (X ,M,∈) is a countable model of RCA0 and A ∈X then there exists a family Y ⊆P(M) such that A∈Y and (Y,M,∈) is a model of WKL0.
Corollary 2 The theory WKL0 is conservative over RCA0 with respect to
What more, Friedman proved in 1977 (this result was not published; it can be found also in Kirby, Paris 1977) that WKL0 is a conservative extension of Skolem arithmetic PRA with respect to
Combining those results together with the fact that WKL0 is a fairly strong theory (what was indicated above) one comes to the conclusion that a large and significant part of classical mathematics is finitistically reducible. This means in fact that Hilbert’s program can be partially realized!
Add that all this has also some “practical” consequences. First observe that the class of
It seems that Hilbert would be satisfied by such results!
←21 | 22→
1 Detlefsen (1990, p. 374) writes that “Hilbert did want to preserve classical mathematics, but this was not for him an end in itself. What he valued in classical mathematics was its efficiency (including its psychological naturalness) as a means of locating the truth of real or finitary mathematics. Hence, any alternative to classical mathematics having the same benefits would presumably have been equally welcome to Hilbert”.
2 ,,Schon Kant hat gelehrt – und zwar bildet dies einen integrierenden Bestandteil seiner Lehre –, dass die Mathematik über einen unabhängig von aller Logik gesicherten Inhalt verfügt und daher nie und nimmer allein durch Logik begründet werden kann, weshalb auch die Bestrebungen von Frege und Dedekind scheitern mußten. Vielmehr ist als Vorbedingung für die Anwendung logischer Schlüsse und für die Betätigung logischer Operationen schon etwas in der Vorstellung gegeben: gewisse, außer-logische konkrete Objekte, die anschaulich als unmittelbares Erlebnis vor allem Denken da sind. Soll das logische Schließen sicher sein, so müssen sich diese Objekte vollkommen in allen Teilen überblicken lassen und ihre Aufweisung, ihre Unterscheidung, ihr Aufeinanderfolgen oder Nebeneinandergereihtsein ist mit den Objekten zugleich unmittelbar anschaulich gegeben als etwas, das sich nicht noch auf etwas anderes reduzieren läßt oder einer Reduktion bedarf. Dies ist die philosophische Grundeinstellung, die ich für die Mathematik wie überhaupt zu allem wissenschaftlichen Denken, Verstehen und Mitteilen für erforderlich halte. Und insbesondere in der Mathematik sind Gegenstand unserer Betrachtung die konkreten Zeichen selbst, deren Gestalt unserer Einstellung zufolge unmittelbar deutlich und wiedererkennbar ist”.