Embedded Formative Assessment. Dylan Wiliam. Читать онлайн. Newlib. NEWLIB.NET

Автор: Dylan Wiliam
Издательство: Ingram
Серия:
Жанр произведения: Учебная литература
Год издания: 0
isbn: 9781945349232
Скачать книгу
their own learning style and also how to use a variety of styles, and to understand the dangers of taking a limited view of their own capabilities. (p. 36)

      As long as teachers vary their teaching style, then it is likely that all students will get some experience of being in their comfort zone and some experience of being pushed beyond it. Ultimately, we should remember that teaching is interesting because our students are so different, but only possible because they are so similar.

       Educational Neuroscience

      Another potential area for teacher professional development—and one that has received a lot of publicity—is applying what we are learning about the brain to the design of effective teaching. Cognitive psychologists work to understand what the brain does and how it does what it does, while neuroscientists try to connect what the brain does to its physiology.

      Some of the earliest attempts to relate brain physiology to educational matters relate to the respective roles of the left and right sides of the brain in various kinds of tasks in education and training, despite clear evidence that the conclusions being drawn were unwarranted (see, for example, Hines, 1987). Schools have been inundated with suggestions for how they can use the latest findings from cognitive neuroscience to develop brain-based education, and despite the wealth of evidence that these claims are at best premature and at worst simply disingenuous (for example, Bruer, 1997, 1999; Goswami, 2006; Howard-Jones, 2009), many neuromyths still abound.

      • Approximately 50 percent of teachers in China, Greece, the Netherlands, Turkey, and the United Kingdom believe that we only use about 10 percent of our brains, and more than 90 percent of teachers in these countries believe that instruction in students’ preferred learning styles is more effective (Howard-Jones, 2014). Neither of these claims is actually true.

      • People are more likely to believe a psychological report if the explanation claims to be based in neuroscience, even if the explanation is nonsense (Weisberg, Keil, Goodstein, Rawson, & Gray, 2008).

      • Over 50 percent of teachers in the Netherlands and the United Kingdom believe that children are less attentive after consuming drinks or snacks that contain a lot of sugar (they’re not), and 90 percent believe that differences in whether the left or the right brain is dominant can help explain individual differences among learners (they can’t; Dekker, Lee, Howard-Jones, & Jolles, 2012).

      • Many believe that people remember 10 percent of what they read, 20 percent of what they hear, 30 percent of what they see, 50 percent of what they hear and see, 70 percent of what they see and write, and 90 percent of what they do, despite the fact that there is absolutely no evidence to support these suspiciously neat percentages (De Bruyckere, Kirschner, & Hulshof, 2015).

      Other neuromyths include the idea that the left side of our brain is analytical and the right side is creative, that you can train your brain with activities like Brain Gym (www.braingym.org), that male and female brains are different, that listening to classical music can improve a child’s cognitive development (the so-called Mozart effect), or that we can learn when we are asleep. None of these is true as far as we know right now (De Bruyckere, Kirschner, & Hulshof, 2015). In fact, we know a great deal about how the brain works and what kinds of activities help students learn, but these findings come from cognitive science rather than neuroscience. Neuroscience, rather, provides plausible explanatory mechanisms for things we already knew from cognitive science. Two leading experts in the field of neuroscience and education, Sergio Della Sala and Mike Anderson (2011), sum it up thus in their “opinionated introduction” to their book, Neuroscience in Education:

      While the use of the term “neuroscience” is attractive for education it seems to us that it is cognitive psychology that does all the useful work or “heavy lifting.” The reason for this is straightforward. We believe that for educators, research indicating that one form of learning is more efficient than another is more relevant than knowing where in the brain that learning happens. There is indeed a gap between neuroscience and education. But that gap is not filled by the “interaction” of neuro-scientists and teachers (nearly always constituted by the former patronizing the latter) or “bridging” the two fields by training teachers in basic neuroscience and having neuroscientists as active participators in educating children. Rather what will ultimately fill the gap is the development of evidence-based education where that base is cognitive psychology. (p. 3)

       Content-Area Knowledge

      If training teachers in cognitive neuroscience isn’t going to help, what about increasing teachers’ knowledge of their subjects? After all, surely the more teachers know about their subjects, the more their students will learn.

      There is evidence that teachers in countries that are more successful in international comparisons than the United States appear to have stronger knowledge of the subjects they are teaching (Babcock et al., 2010; Ma, 1999), and this, at least in part, appears to be responsible for a widespread belief that teacher professional development needs to be focused on teachers’ knowledge of the subject matter they are teaching.

      It is important to note that not all kinds of subject-matter knowledge have the same impact on student progress. A study of German high school mathematics teachers found that students did not make more progress when their teachers had advanced mathematics knowledge (such as knowledge of mathematics studied at university). However, when teachers had a profound understanding of the school-level mathematics they were teaching, then, echoing Heather Hill, Brian Rowan, and Deborah Ball’s (2005) study, students did make more progress (Baumert et al., 2010). Thus, it appears that an in-depth understanding of the curriculum may be more beneficial to student progress than advanced study of a subject on the part of the teacher.

      Most studies of the relationship between teacher subject-matter knowledge and student progress, including those by Hill et al. (2005) and Jurgen Baumert et al. (2010) discussed previously, are cross-sectional in nature; researchers look to see whether the teachers whose classes make more progress have higher levels of subject knowledge. However, even if a link is found, it is not clear what this means. It could be that what really matters is general intellectual ability—that those with higher intellectual ability find learning their subject easier, and also make more effective teachers. To rule this out, we need experimental studies, where some teachers work on improving their subject knowledge while others work on something else, and then we compare their students’ progress. Here, the results are rather disappointing.

      Summer professional development workshops do increase teachers’ knowledge of their subjects (Hill & Ball, 2004), but most studies that have increased teachers’ subject knowledge find little or no knock-on effects on student achievement. For example, an evaluation of professional development designed to improve second-grade teachers’ reading instruction found that an eight-day content-focused workshop increased teachers’ knowledge of scientifically-based reading instruction and also improved the teachers’ classroom practices on one out of three instructional practices that had been emphasized in the professional development (Garet et al., 2008). However, at the end of the following school year, there was no impact on the students’ reading test scores. More surprising, even when supplementing the workshop with in-school coaching, the effects were the same.

      A similar story emerges from an evaluation of professional development for middle school mathematics teachers in seventy-seven schools in twelve districts (Garet et al., 2010). The districts implemented the program as intended, which resulted in an average of fifty-five hours of additional professional development for participants (who had been selected by lottery). Although the professional development had been specifically designed to be relevant to the curricula that teachers were using in their classrooms and did have some impact on teachers’ classroom practice (specifically the extent to which they engaged in activities that elicited student thinking), there was no impact on student achievement, even in the specific areas on which the intervention focused (ratio, proportion, fractions, percentages, and decimals). A study that attempted to improve mathematics and science learning in early years teaching found that increasing teachers’ subject knowledge had no impact on student achievement (Piasta, Logan, Pelatti, Capps, &