Exposed Science. Sara Shostak. Читать онлайн. Newlib. NEWLIB.NET

Автор: Sara Shostak
Издательство: Ingram
Серия:
Жанр произведения: Медицина
Год издания: 0
isbn: 9780520955240
Скачать книгу
“We must be productively linked to our constituents . . . to fulfill the promise of our mission” (US GPO 2007: 29). Again, the boundary between biomedicine and public health was a focal concern, as speakers emphasized that “prevention and environmental intervention represent the most effective and efficient ways to improve human health, and this core principle should not be lost in favor of technical, individually oriented medical solutions” (US GPO 2007: 72).

      Given the preventive and public health focus of the scientists testifying before the panel, their comments regarding molecular genetics and genomics were quite striking. Genetics has most often been associated with exactly the technical, clinical, individually oriented biomedical approaches that scientists described as what the environmental health sciences are not. However, in their testimonies before Congress, these speakers highlighted molecular genetic approaches as a promising solution to the ongoing and seemingly intractable problems confronted by scientists who seek to explicate relationships between environments, human bodies, and health and illness. Repeatedly, in their description of the agenda of the NIEHS, they asserted powerfully the importance of “new opportunities in science” (US GPO 2007: 23), particularly in molecular genetics and genomics, for environmental health research. Goldman described the NIEHS as “positioned to harness the next generation of scientific advances, such as in molecular biology and genetics, in the service of advancing environmental health sciences” (US GPO 2007: 70). Wilson explicitly connected molecular genetics research to the public health mission of the NIEHS, stating, “Our understanding of how the environment operates at the molecular level can also provide insights on interventions and early markers for disease . . . ” and emphasizing the importance of evaluating how “emerging technologies can be used to enhance public health prevention strategies” (US GPO 2007: 21, 28, emphasis added). Lucier highlighted the importance of “technological innovations and molecular biology” for the NTP. Likewise, Hines emphasized the importance of approaches that would “bring environmental health research out of the sidelines where it consists only of testing chemicals for toxicity into a more mainstream role where research would investigate how environmental agents contribute to specific diseases that impact public health on a large scale” (US GPO 2007: 79–80).

      What can we learn from this hearing? First, the major institutions of environmental health research must answer to Congress for their actions. They are accountable, particularly, for their contributions to public health policy.4 Their funding depends on meeting their missions and mandates, as understood by politicians in Congress. Second, and related, the environmental health sciences have defined themselves as being part of public health and in contrast to biomedicine. Indeed, the NIEHS consciously seeks to establish an identity as “the prevention Institute.”5 At the center of this distinction is the difference between protecting health and preventing illness using population-level interventions, such as environmental regulation, versus treating disease using individual clinical interventions, such as pharmaceuticals. Third, given their focus on population-level interventions, there has been a push within the environmental health sciences to engage with affected communities and to work collaboratively to address environmental concerns. Fourth, by 2007, leading environmental health scientists, standing in front of the legislative body that authorizes their funding, were making strong claims about the importance of molecular genetic techniques to their public health mission.

      Explaining why and how molecular genetics became positioned as a critical component of environmental health research, regulation, and policy making is the central concern of this book. Toward that end, my goal in this chapter is to provide a map of the institutional actors in the U.S. environmental health arena and to introduce their relationships and key struggles. In so doing, I draw both on the comments made before Congress in 2007 and a broader sociological analysis.6

      

      THE ENVIRONMENTAL HEALTH ARENA

      Understanding Environmental Exposures

      At the center of the environmental health arena are questions and controversies about whether specific environmental exposure poses a risk to human health and, if so, under what conditions (e.g., at what dose, via which routes of exposure, for whom, etc.) and how such risks are best controlled. Environmental health scientists and scientific institutions play a central role in this arena. In most instances, knowledge of environmental hazards is contingent upon “the ‘sensory organs of science’—theories, experiments, measuring instruments—in order to become visible or interpretable as hazards at all” (Beck 1992: 27, emphasis in original). Chemicals in the settings where we live, work, and play, in what we eat, and in the products we use to care for our bodies, clean our homes, tend to our yards, and so on are often neither visible nor perceptible to the persons being exposed to them (Altman et al. 2008). Additionally, many toxic substances have a lengthy latency period before the effects of exposure emerge, and others may affect not the person exposed but her or his children (Schettler et al. 2000; Steingraber 2003). Consequently, people are exposed without their knowledge to combinations of chemicals as they move through their homes, workplaces, and communities. Moreover, although members of the public may fear, perceive, and even document evidence of suspected environmental hazards (Brown & Mikkelson 1994), the legitimate recognition of a risk requires the tools and practices of science: “So long as risks are not recognized scientifically, they do not exist—at least not legally, medically, technologically, or socially—and they are thus not prevented, treated or compensated for. No amount of collective moaning can change this, only science” (Beck 1992: 71).

      This “scientization” has been challenged by environmental health activists, who argue that individuals and communities have important “lay knowledge” about environmental hazards (Corburn 2005) and should not be excluded from policy debates (Brown 2007: 19). There is some evidence that activists’ challenges to the technical practices of environmental health science have created opportunities for new forms of knowledge production (Ottinger & Cohen 2011). Nonetheless, environmental health science remains the authoritative idiom for making claims about the effects of environmental exposures on human health. As we will see, science is therefore also the idiom in and through which controversies about the effects of environmental exposures and regulatory strategies take place.

      Explaining the relationships among bodies, environmental exposures, and human health and illness is the primary focus of the sciences of environmental epidemiology and toxicology. Epidemiology is the study of “disease occurrence in human populations and the factors that influence these patterns” (Lillienfield & Stolley 1994: 3). Epidemiologists use a variety of study designs, all of which rely heavily on statistical techniques, for establishing and quantifying the relationships between exposure to risk factors and disease outcomes in human populations. Environmental epidemiologists focus particularly on the effects of exposures in the ambient environment (e.g., air, water, soil). Toxicology is “the study of the adverse effects of xenobiotics” (Gallo 1996: 3) and includes both the study of absorption, distribution, excretion, and biotransformation of such agents and the analysis of basic toxicological processes within specific organ systems. Although much toxicology is ultimately concerned with human health and illness, toxicologists rely heavily on animal models, in vitro bioassays, and laboratory research (Sellers 1997; NTP 2002). Epidemiology and toxicology are the “core sciences” of public health in the United States (Omenn 2000). Institutionally, academic departments of epidemiology and toxicology are located in schools of public health, where their faculties often staff multidisciplinary environmental health research centers.

      The location of environmental health science within the context of public health has had profound implications for the work of environmental health scientists, shaping patterns of funding, defining markets for their research, and determining opportunity structures for employment. In contrast to much research in the contemporary life sciences, which is oriented to biomedical interventions such as new pharmaceuticals or devices, the primary consumers of environmental health research include risk assessors, regulators, and policy makers; there is no promise of a lucrative “magic bullet,” or cure, to environmental exposures or their consequences. This dynamic was highlighted at the Congressional hearing, when the subcommittee chair noted “ . . . a significant failure of the market system: there is little profit in prevention when compared to treatment” (US GPO 2007: 7). As such, there are few incentives for private sector investment