This anagogical tendency of Kleist’s text, well within the boundaries of idealist philosophies of art at the time, has a mechanical corollary that is important for any understanding of the age of machines. For the other consequence of the expulsion from paradise was the condemnation of the offended God: “Cursed is the ground because of you, in toil you shall eat of it all the days of your life” (Gen. 3:17). Work thus became the indelible sign of God’s curse, a curse that—according to Christian theologians—could be lifted once and for all only by the apocalyptic destruction of the world. In the meantime, however, anything that helped to alleviate the weight of toil played a role in the drama of salvation. Therein lay the eschatological potential of machines that provided the background for even the most technical discussion of linkages and transmissions.28 This potential was radically ambivalent, as were the debates it would provoke: either machines were seen as the means of breaking the sanctions of work and mortality that characterized all human life after the Fall, or they were hailed as the tools of emancipation with which human ingenuity managed to mitigate, and perhaps overcome, the curse of work. These positions were not necessarily articulated in theological terms—the ecological criticism of machines that started early in the nineteenth century substituted the integrity of nature (and later that of Being) for the will of God, and the awe of machines and engineering was certainly not anti-Christian—but they were part of a deeper reflection that accompanied the rise of machines. The provocative point Herr C. makes—that we will have regained grace, and with it admission to the Garden of Eden, to the fullness of life and language once we have installed machines that counter the trajectory of falling things—stands at the beginning of this history of interpretation.
Kleist’s text, then, links the most mundane questions of motion transmission to the last questions of biblical hermeneutics. In the scenes between Herr C. and the narrator, it enacts a dialogue about the meaning of mechanisms, specifically about the relation between the induction of motion and salvation. In hermeneutic terms, this is the relation between the literal and the anagogical meaning of a term. Medieval interpreters of the Bible had simplified the multiple senses of the Scripture—they, too, were a result of the fall from grace—into four categories: literal, allegorical, moral, and anagogical. The classical example is Jerusalem. On the literal level, it is the historical city, on an allegorical level the church, on a moral level the soul of the believer, and on an anagogical level the heavenly city of salvation.29 Kleist directly conjoins the literal and the anagogical sense of the marionette while disregarding its allegorical value—the puppet does not signify anything else than itself, whereas in Schiller’s and Kant’s aesthetics it signifies heteronomy and absence of feeling—and disdaining the moral dimension, which he belittles as “affectation.” For the formulation of the literal sense, Kleist invokes, as we have seen, the mathematical language Newton had proposed to purge science from the three spiritual senses; in his anagogical questioning he envisions a reopening of the gates of paradise through the elimination of the literal, physical fall, the effects of gravity and inertia. In the hermeneutic tradition, anagogy wants to know how and when the injustices of the world will be righted, and what clues Scripture, or the book of nature, furnishes us to understand where we are in the history of salvation. Traditional anagogical interpretation, then, has as its vanishing point the apocalypse. Kleist’s anagogy imagines a return to paradise without prior judgment and without prior destruction of the world.30
This vision of the anagogical role of machines motivated, as mentioned, a great deal of advocacy for and activism against machines in the nineteenth century, whether explicitly or not. It was accentuated by the new physics of thermodynamics, and in particular by the law of entropy: rather than a day of wrath visited on the world from the outside, apocalypse in the nineteenth century became a predictable, inevitable feature of the world conceived as a finite configuration of energy. Machines could either be seen as accelerating this end—if the focus was on the consumption and pollution of their motor—or as slowing it—if the focus was on the optimization of energy/motion transmission. The latter was the position taken by kinematicists, as the next chapter will show, and was behind their secret conviction that kinematics and its associated practices (like the emergent science of lubrication) had a key role to play in nineteenth-century culture.
The anagogical horizon of thermodynamics, of course, was not yet circumscribed at the time of Kleist, but the differentiation of machines into multiple senses was well under way. Already at the end of the eighteenth century, when the success of the steam engine had prompted further reflections on the nature and history of machines, French scientists had begun to discuss and institutionalize the analysis of machines in terms of their motor, transmission, and tool functions.31 It was in this division that kinematics as the science of transmissions was first named and defined. While there are problems with this view—Where, for example, is the tool of a locomotive?—it survived as a heuristic approach throughout the century. It is tempting to speculate whether it was consciously modeled after the hermeneutics of Scripture, with the motor representing the literal engagement of the machine with the world, the transmission the allegorical transport of motion, and the tool the moral interaction of machine and man. Much less speculative is the assumption that cultural, social, and literary criticism of machines has focused almost exclusively on the first and last of these “senses.” Motor criticism, so to speak, is concerned with the unnaturalness and danger of thermally produced power, with its outsized dimensions, and with its ecological consequences. A great deal of late Romantic affect against machines and industry, in Wordsworth, Raabe, or Baudelaire, is fueled by this thought. Tool criticism, as it were, is mostly concerned with the degradation of work, with the displacement of the hand from direct contact with the object of work, and with the social deformations ensuing from the factory system. Disraeli’s novel Sybil comes to mind, or William Morris and the Arts and Crafts movement, but mostly, of course, Karl Marx, to whom later chapters will return.
Within this horizon, the concentration in the following pages on transmissions and their discourse, kinematics, seeks to fill a gap. The intention is certainly not to disregard other discourses on machines but to insist that there is an irreducible “transmissive” sense of speaking about machines and that this sense has been obscured by the disproportionate attention paid to motors and tools. Since in transmissions motion is transferred by contiguous contact, kinematics focuses on the form of machine parts and on the motions they can absorb and produce. Given their mutual constraint, these machine parts are bound by a synchronous, “analog” logic that radiates out both to the motor and to the tool and limits their form; but there is also a history of these forms that has rarely been told and that leaves an imprint not only on the machines but also on the objects they produce and on the culture in which they move. The titular result of this history is the epochal importance of the cylindrical form for a full comprehension of the nineteenth century.
In keeping with the superimposition of the parts of the machines and the senses of interpretation, the attention to transmissions could be said to explicate the allegorical sense of machines. It is certainly true that in a “literal” sense the transmission is the allegorical part of the machine—it is nothing for itself, it is designed to make motion “other,” it refers from one part (the motor) to another (the tool), and so forth. We will encounter this literalization of allegories and metaphors throughout the following pages; revolution, translation, horizon, freedom all have very literal, three-dimensional meanings in kinematics. Another egregious example is the notion of Gestell, which in Franz Reuleaux’s kinematics denotes the one member in a linkage that is fixated so that the others can move. We now know that Martin Heidegger read Reuleaux in preparation for his essay “The Question of Technology,” which launched Gestell into conceptual orbit.32
Allegories are, in the tradition of rhetoric, extended metaphors. The late German philosopher Hans Blumenberg—perhaps Heidegger’s worthiest and most powerful opponent—published his Paradigms for a Metaphorology in 1960 partly as a counterproject to Heidegger’s incessant reliance on etymologies and to the obscurity of his concepts. His principal claim is that some metaphors, rather than supplementing or adorning concepts, are originary (Blumenberg calls them “absolute”) and only later become hardened into the currency of concepts. The use of such metaphors can only be exemplified but not theorized (hence the title Paradigms); it is born from the initial speechlessness with