The ubiquity of the cylinder in the machines and products of the nineteenth century is due to its kinematic properties—its ability to force, transmit, and apply (to use a ethically paradoxical term) single-freedom motion. This insight translates the traditional triad of motor, transmission, and tool into the kinematic triad of forcing, translating, and applying motion. Kinematics, as Reuleaux’s work shows, affords a view of machines from the inside out; much like the allegorical readings of old, which focus on intra- and intertextual relations, kinematics focus not only on the design and the necessities of individual devices but also on their interrelation, sometimes across several generations and avatars.1 These relations are visible in the transmissions proper—for example, in Watt’s parallel motion, in the driving gear of a locomotive, or in the mechanism of a front loader—while they also connect the kinematics of the motor (the cylinder of the steam engine), the new motions of the tools (the rolling of steel mills), and finally the objects these machines produce (the tin can, the pipe). Kinematics provides a standpoint from which to recognize in hitherto unrelated phenomena their underlying embodiment of motion. For example, it has often been argued that the nineteenth century, through its ability to machine and lubricate journal bearings, reinvented the wheel; but half-journal bearings were also used to allow the Galerie des Machines, an iconic iron and glass structure that spanned the largest interior space in the world in 1889, to expand and contract.2 Just as we can think kinematically of the Galerie as a minimally moving wheel, we can think of the film camera as a lathe that carves light onto film, or of the fountain pen and the gasholder as the scalar extremes of a cylinder-piston assembly. Even the bridges of the nineteenth century, subject to so much debate, experimentation, and failure, conserve in the curvature of their arches and straightness of their carriageways the motion with which their parts were produced and with which they were launched from bank to bank—they, too, are frozen transmissions.3 The Jena Romantics had the idea of breaking up the reification of the world by romanticizing it; kinematicizing the world of the nineteenth century similarly dissolves its massive structures, but it does so without introducing alien interpretive categories. Rather, we learn to see what Walter Benjamin has called the disfigured similarities (entstellte Ähnlichkeiten) that make up the coherence of the epoch.4
Yet kinematics discloses not only synchronic similarities across the epoch but also the profound historical and metaphysical conflict leading up to the forcing of rotational and translational motion in nineteenth-century cylinders. This conflict, the barest outlines of which are the subject of the following pages, has commanded little attention because techno-historical scholarship of the epoch has concentrated on kinematics’ invisible other, the discovery and implementation of induction electricity—produced, to be sure, by the rotation of a magnet around a cylindrical coil, and hailed as a prime instance of convertibility. Electricity led to technologies and media that are no longer analog but, like an electrical spark, jump a gap. Telegraphy was its first successful application, and it is not hard to understand why it garners such attention—the difference between positive and negative, long and short, on and off, 0 and 1, seems to indicate a minimum of meaning amid the randomness of thermodynamic processes and thus to furnish the kind of interface between physical and intellectual realms that has long been the goal of modern natural science.5 Of course, such processes, and their implementation in various media, are critically important, in particular for the archaeology of our own digital present; but scholarship rarely treats them as what they literally are, dei ex machina. Telegraphy, for example, depends entirely on cylindrical objects and processes—on the rolling of wires and cables, on the railway lines along which wires were strung, on the steamships from which they were laid across the ocean, and finally on the rotating drums in telegraphic transmitters and receivers. Similar kinematics underlie the development of the film camera.
The tactile and epistemological difference between analog kinematics and digital electricity is nicely captured in the reaction to the transition from gas to electrical lighting in private households around 1880. Early users of electricity remarked how uncanny it was to switch on the light, thus turning darkness to light (almost) instantaneously, rather than to open the tap and light the gradually emerging gas.6 Both the unfathomable speed and the invisibility of electrical transmission raised concerns about the very fabric of the world. The growing popularity of all sorts of communications with invisible figures in séances is further testimony to the emergence of paradigms of invisible contact. Oswald Spengler, decrying the decline of the West at the beginning of the twentieth century, lamented that through electricity the bodies of machines “become ever more spiritual, ever more taciturn. The wheels, cylinders, and levers no longer talk. All that is important withdraws into the interior.” Walter Benjamin, reading Charles Baudelaire’s Flowers of Evil (1857), equated the disappearance of visible causation with the loss of meaningful experience, to be replaced by the (essentially meaningless) electrical sensation of repetitive shock.7
The disappearance of the machine from the visible, auditory, and tactile world imposes the question: If the electrical and digital age constitutes the far end of the epoch of the cylinder, and if that epoch began with Watt’s invention of parallel motion, what came before its beginning? Looking backwards from the threshold of the epoch, we find that the distinction between translational and rotational motion, which is at the core of all kinematic endeavor in the nineteenth century, has a long and momentous history, a history that structures Western metaphysics and theology in significant, yet undisclosed ways. The threshold of kinematics was crossed at the moment when the double-acting steam engine required mechanisms that forced a compromise between rotation and translation. Of course, there were earlier attempts to tackle this problem, as all machines, regardless of their motor, are apparatuses for forcing motion, and water- and windmills in particular had long been outfitted with sophisticated transmissions that turned the motion of the wheels into all manner of reciprocal and intermittent motion. The steam engine, however, required the conversion of motions in both directions, from translation to rotation and vice versa, and it thereby raised the question of their relation to a general level. Theoretical kinematics attempted to deliver a priori rules of this forcing, but, despite Reuleaux’s historical interest, it had no consciousness of its implications and antecedents. The following all too brief overview over the metaphysics of motions up to the nineteenth-century attempts to make up for this lack.8
The most influential early text in the valuation of motion, itself a summa of extended previous debates, is book 10 of Plato’s Laws. Corporeal motion for Plato indicates a state of deficiency with respect to the immutable realm of ideas; it is a predicament of the world insofar as it is secondary, changeable, and imperfect. Nonetheless, not all motions are equal, and in the hierarchy of motions the best is that which reaches into immutability. This must be the motion of the soul, for the only relation that exists, in Plato’s thought, between the world of ideas and the world of changeable and changing things is the soul. Its motion is the best; it is, like Newton’s mass points, free in every direction, but it has the ability to originate motion. Only after this bridge to the ideas has been established—in a way that foreshadows Aristotle’s concept of a pure origination of motion in the unmoved mover—does Plato rank motions in space. Rotation, combining rest (of the central axis) and motion (of the periphery) is an image of psychic motion and therefore the best possible corporeal motion. Below rotation Plato puts the continuous sliding or rolling motion of bodies in translation, followed by phenomena we would not recognize as essentially kinetic, like growth, division, and disintegration. A little further in the text (898a), he contrasts rotation and translation as motions appropriate and inappropriate to the soul, the motions of rationality and of irrationality respectively. In the cosmogony of Plato’s Timaios—the most important of his dialogues for the Middle Ages—the demiurge endows the earth with rotation, “which, among the seven motions, is the motion most appropriate to reason and wisdom.” The six other motions are the translational “freedoms” of a rigid body: back, forth, left, right, up, down. As translational motions they are nothing but “deviations.”9 The earth’s rotation and the sphericity that results from it comprise the straight-line motions of the polygons of which the earth is made up—a contrast and tension that has found its most enduring image of the nested solids surrounded by spheres in Johannes Kepler’s Mysterium cosmographicum.10
Aristotle accepts