Видатні наукові відкриття. Дитяча енциклопедія. Отсутствует. Читать онлайн. Newlib. NEWLIB.NET

Автор: Отсутствует
Издательство:
Серия:
Жанр произведения: Учебная литература
Год издания: 2007
isbn: 966-03-3592-X
Скачать книгу
Арістотель вважав, що головні відкриття в геометрії вже зроблені. Настав час переносити її методи в інші науки: фізику й зоологію, ботаніку й політику. Але найважливіше знаряддя геометрії – це логічний метод міркувань, що веде до вірних висновків з будь-яких вірних передумов. Цей метод Арістотель виклав у книзі «Органон»; нині її називають початком математичної логіки. Арістотель заклав основи науки логіки й висловив низку ідей щодо визначень, аксіом, нескінченності й можливості геометричних побудов.

      Євдокс

      Найбільшим із грецьких математиків класичного періоду, що поступалися за значущістю отриманих результатів тільки Архімедові, був Євдокс (бл. 408–355 рр. до н. е.). Саме він увів поняття величини для таких об’єктів, як відрізки прямих і кути. Маючи у своєму розпорядженні поняття величини, Євдокс логічно строго обгрунтував піфагорійський метод дій з ірраціональними числами. В галузях математики він перевершив навіть Піфагора, створивши першу теорію ірраціональних чисел.

      Нині здається дивним, що Євдокс не розвинув теорію чисел у більш простому напрямку. Адже він фактично відкрив числовий промінь. Чому він не відкрив числову пряму, ввівши нуль і від'ємні числа? Напевно, Євдокс потрапив у полон до вигаданого ним самим визначення: числа суть довжини відрізків. Що таке відрізок довжини (-2)? Чим він відрізняється від відрізка довжини 2? На таке питання у Євдокса не було відповіді. Інша річ, коли б від'ємні числа вже були б задіяні математиками Еллади. Наприклад, таке число може позначати борг купця – якщо позитивне число зображує його майно. Тоді майно жебрака доведеться зобразити нулем! Таке «купецьке» подання про числа склалося десь на Близькому Сході через п'ять-шість століть після відкриття Євдокса…

      Праці Євдокса дали змогу встановити дедуктивну структуру математики на основі чітко сформульованих аксіом. Йому ж належить і перший крок у створенні математичного аналізу, оскільки саме він винайшов метод обчислення площ і об’ємів, що дістав назву «методу вичерпування». Цей метод полягає в побудові вписаних і описаних пласких фігур або просторових тіл, які заповнюють («вичерпують») площу або об’єм тієї фігури чи того тіла, що є предметом дослідження. Євдоксу ж належить і перша астрономічна теорія, яка пояснює рух планет. Запропонована Євдоксом теорія була суто математичною; вона показувала, яким чином комбінації обертових сфер з різними радіусами й вісями обертання можуть пояснити нерегулярні рухи Сонця, Місяця й планет.

      Близько 300 року до нашої ери досвід багатьох грецьких математиків був зведений в одне ціле Евклідом, що написав математичний шедевр «Начала». З деяких інтуїтивно відібраних аксіом Евклід вивів близько 500 теорем, що охопили всі найважливіші результати класичного періоду. Свій твір Евклід почав з визначення таких термінів, як пряма, кут і коло. Потім він сформулював десять самоочевидних істин, таких як «ціле більше кожної із частин». І із цих десяти аксіом Евклід зміг вивести всі теореми. Для математиків текст евклідових «Начал» тривалий