We find him also comparing magnets by what is known to us as the "magnetometer method." He brings the magnetized bars in turn near a compass-needle and concludes that the magnet or the lodestone which is able to make the needle go round is the best and strongest. He also seeks to compare magnets by a process of weighing, similar to what is called, in laboratory parlance, the "test-nail" method. He also inquires into the effect of heat upon his magnets, and finds that 'a lodestone subjected to any great heat loses some of its energy.' He applies a red-hot iron to a compass-needle and notices that it 'stands still, not turning to the iron.' He thrusts a magnetized bar into the fire until it is red-hot and shows that it has lost all magnetic power. He does not stop at this remarkable discovery, for he proceeds to let his red-hot bars cool while lying in various positions, and finds: (1) that the bar will acquire magnetic properties if it lie in the magnetic meridian; and (2) that it will acquire none if it lie east and west. These effects he rightly attributes to the inductive action of the earth.
Gilbert marks these and other experiments with marginal asterisks; small stars denoting minor and large ones important discoveries of his. There are in all 21 large and 178 small asterisks, as well as 84 illustrations in De Magnete. This implies a vast amount of original work, and forms no small contribution to the foundations of electric and magnetic science.
Gilbert clearly realized the phenomena and laws of magnetic induction. He tells us that "as soon as a bar of iron comes within the lodestone's sphere of influence, though it be at some distance from the lodestone itself, the iron changes instantly and has its form renewed; it was before dormant and inert; but now is quick and active." He hangs a nail from a lodestone; a second nail from the first, a third from the second and so on—a well-known experiment, made every day for elementary classes. Nor is this all, for he interposes between the lodestone and his iron nail, thick boards, walls of pottery and marble, and even metals, and he finds that there is naught so solid as to do away with its force or to check it, save a plate of iron. All that can be added to this pregnant observation is that the plate of iron must be very thick in order to carry all the lines of force due to the magnet, and thus completely screen the space beyond.
But Gilbert is astonishing when he goes on to make thick boxes of gold, glass and marble; and, suspending his needle within them, declares with excusable enthusiasm that, regardless of the box which imprisons the magnet, it turns to its predestined points of north and south. He even constructs a box of iron, places his magnet within, observes its behavior, and concludes that it turns north and south, and would do so were "it shut up in iron vaults sufficiently roomy." In this, he was in error, for experiments show that if the sides of the box are thin, the needle will experience the directive force of the earth; but if they are sufficiently thick—thick as the walls of an ordinary safe—the inside of such a box will be completely screened; none of the earth's magnetic lines will get into it so that the needle will remain indifferently in any position in which it is placed. Some years ago, the physical laboratory of St. John's College, Oxford, was screened from the obtrusive lines of neighboring dynamos by building two brick walls parallel to each other and eight inches apart and filling in the space with scrap iron. A delicate magnetometer showed that such a structure allowed no leakage of lines of force through it, but offered an impenetrable barrier to the magnetic influence of the working dynamos.
Gilbert's greatest discovery is that the earth itself acts as a vast globular magnet having its magnetic poles, axis and equator. The pole which is in our hemisphere, he variously calls north, boreal or arctic. Whilst that in the other hemisphere he calls south, austral or antarctic. He sought to explain the magnetic condition of our globe by the presence, especially in its innermost parts, of what he calls true, terrene matter, homogeneous in structure and endowed with magnetic properties, so that every separate fragment exhibits the whole force of magnetic matter. He is quite aware that his theory is a grand generalization; and admits that it is "a new and till now unheard-of view," and so confident is he in its worth that he is not afraid to say that "it will stand as firm as aught that ever was produced in philosophy, backed by ingenious argumentation or buttressed by mathematical demonstration."
In developing his theory of terrestrial magnetism, Gilbert fell into certain errors, chiefly for want of data, but partly also by reason of his adherence to the view that the earth exactly resembled his terrella in its magnetic action. Accordingly, he believed that the magnetic poles of the earth were diametrically opposite each other and that they coincided with the poles of rotation, whence it followed that the magnetic meridian everywhere coincided with the geographical, and that the magnet, unless influenced by local disturbances, stood true to the pole.
It was, however, well known from the thrilling experience of Columbus and the constant report of travelers that this was not the case. Gilbert himself says that at the time of writing, in the year 1600, the needle pointed 11–⅓° east of north in London; but what he did not know and could not have known was that this easterly deviation was decreasing from year to year, to vanish altogether in 1657, after which the needle began to decline to the west.
This magnetic declination sorely perplexed Gilbert, as it did not fit in with his theory. Yet an explanation was needed; and as the earth must be considered a normal and well-behaved magnet, though of cosmical size, Gilbert turns the difficulty by saying that this variation is nothing else than "a sort of perturbation of the directive force" caused by inequalities in the earth's surface by continents and mountain masses: "Since the earth's surface is diversified by elevations of land and depths of seas, great continental lands, oceans and seas differing in every way while the power that produces all magnetic movements comes from the constant magnetic earth-substance which is strongest in the most massive continent and not where the surface is water or fluid or unsettled, it follows that toward a massive body of land or continent rising to some height in any meridian, there is a measurable magnetic leaning from the true pole toward the east or the west."
So convinced is Gilbert of the true and satisfactory character of his explanation that he goes on to say that, "In northern regions, the compass varies because of the northern eminences; in southern regions, because of southern eminences. On the equator, if the eminences on both sides were equal, there would be no variation." In a later chapter of Book IV., he adds that, "in the heart of great continents there is no variation; so, too, in the midst of great seas."
As continents and mountain-chains are among the permanent features of our planet, Gilbert concluded that the misdirection of the needle was likewise permanent or constant at any given place, a conclusion which observations made after Gilbert's time showed to be incorrect. Gilbert writes: "As the needle hath ever inclined toward the east or toward the west, so even now does the arc of variation continue to be the same in whatever place or region, be it sea or continent; so, too, will it be forever unchanging."
This we know to be untrue, and Gilbert, too, could have known as much had he brought the experimental method, which he used with such consummate skill and fruitful results in other departments of his favorite studies, to bear on this particular element of terrestrial magnetism. He labored with incredible ardor and persistence for twenty years in his workshops at Colchester over the experiments in electricity, magnetism and terrestrial magnetism which he embodies and discusses in his original and epoch-making book, De Magnete, published in the year 1600; a period of twenty years was long enough for such a careful observer as he was to detect the slow change in magnetic declination discovered by his friend Gellibrand in 1634, published by him in 1635, and known to-day as the "secular variation." It is true the quantity to be measured was small; but what is surprising is that such an industrious