Man's Place in Nature, and Other Essays. Thomas Henry Huxley. Читать онлайн. Newlib. NEWLIB.NET

Автор: Thomas Henry Huxley
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4057664562272
Скачать книгу

      These examples might be greatly multiplied, but they suffice to show that, in whatever proportion of its limbs the Gorilla differs from Man, the other Apes depart still more widely from the Gorilla, and that, consequently, such differences of proportion can have no ordinal value.

      We may next consider the differences presented by the trunk, consisting of the vertebral column, or backbone, and the ribs and pelvis, or bony hip-basin, which are connected with it, in Man and in the Gorilla respectively.

      In Man, in consequence partly of the disposition of the articular surfaces of the vertebræ, and largely of the elastic tension of some of the fibrous bands, or ligaments, which connect these vertebræ together, the spinal column, as a whole, has an elegant S-like curvature, being convex forwards in the neck, concave in the back, convex in the loins, or lumbar region, and concave again in the sacral region; an arrangement which gives much elasticity to the whole backbone, and diminishes the jar communicated to the spine, and through it to the head, by locomotion in the erect position.

      Furthermore, under ordinary circumstances, Man has seven vertebræ in his neck, which are called cervical; twelve succeed these, bearing ribs and forming the upper part of the back, whence they are termed dorsal; five lie in the loins, bearing no distinct, or free, ribs, and are called lumbar; five, united together into a great bone, excavated in front, solidly wedged in between the hip bones, to form the back of the pelvis, and known by the name of the sacrum, succeed these; and finally, three or four little more or less moveable bones, so small as to be insignificant, constitute the coccyx or rudimentary tail.

      In the Gorilla, the vertebral column is similarly divided into cervical, dorsal, lumbar, sacral and coccygeal vertebræ, and the total number of cervical and dorsal vertebræ, taken together, is the same as in Man; but the development of a pair of ribs to the first lumbar vertebra, which is an exceptional occurrence in Man, is the rule in the Gorilla; and hence, as lumbar are distinguished from dorsal vertebræ only by the presence or absence of free ribs, the seventeen “dorso-lumbar” vertebræ of the Gorilla are divided into thirteen dorsal and four lumbar, while in Man they are twelve dorsal and five lumbar.

      Not only, however, does Man occasionally possess thirteen pair of ribs,[27] but the Gorilla sometimes has fourteen pairs, while an Orang-Utan skeleton in the Museum of the Royal College of Surgeons has twelve dorsal and five lumbar vertebræ, as in Man. Cuvier notes the same number in a Hylobates. On the other hand, among the lower Apes, many possess twelve dorsal and six or seven lumbar vertebræ; the Douroucouli has fourteen dorsal and eight lumbar, and a Lemur (Stenops tardigradus) has fifteen dorsal and nine lumbar vertebræ.

      The vertebral column of the Gorilla, as a whole, differs from that of Man in the less marked character of its curves, especially in the slighter convexity of the lumbar region. Nevertheless, the curves are present, and are quite obvious in young skeletons of the Gorilla and Chimpanzee which have been prepared without removal of the ligaments. In young Orangs similarly preserved, on the other hand, the spinal column is either straight, or even concave forwards, throughout the lumbar region.

      Whether we take these characters then, or such minor ones as those which are derivable from the proportional length of the spines of the cervical vertebræ, and the like, there is no doubt whatsoever as to the marked difference between Man and the Gorilla; but there is as little, that equally marked differences, of the very same order, obtain between the Gorilla and the lower apes.

      The Pelvis, or bony girdle of the hips, of Man is a strikingly human part of his organization; the expanded haunch bones affording support for his viscera during his habitually erect posture, and giving space for the attachment of the great muscles which enable him to assume and to preserve that attitude. In these respects the pelvis of the Gorilla differs very considerably from his (Fig. 15). But go no lower than the Gibbon, and see how vastly more he differs from the Gorilla than the latter does from Man, even in this structure. Look at the flat, narrow haunch bones—the long and narrow passage—the coarse, outwardly curved, ischiatic prominences on which the Gibbon habitually rests, and which are coated by the so-called “callosities,” dense patches of skin, wholly absent in the Gorilla, in the Chimpanzee, and in the Orang, as in Man!

      In the lower Monkeys and in the Lemurs the difference becomes more striking still, the pelvis acquiring an altogether quadrupedal character.

      But now let us turn to a nobler and more characteristic organ—that by which the human frame seems to be, and indeed is, so strongly distinguished from all others—I mean the skull. The differences between a Gorilla’s skull and a Man’s are truly immense (Fig. 16). In the former, the face, formed largely by the massive jaw-bones, predominates over the brain case, or cranium proper: in the latter, the proportions of the two are reversed. In the Man, the occipital foramen, through which passes the great nervous cord connecting the brain with the nerves of the body, is placed just behind the centre of the base of the skull, which thus becomes evenly balanced in the erect posture; in the Gorilla, it lies in the posterior third of that base. In the Man, the surface of the skull is comparatively smooth, and the supraciliary ridges or brow prominences usually project but little—while, in the Gorilla, vast crests are developed upon the skull, and the brow ridges overhang the cavernous orbits, like great penthouses.

      Sections of the skulls, however, show that some of the apparent defects of the Gorilla’s cranium arise, in fact, not so much from deficiency of brain case as from excessive development of the parts of the face. The cranial cavity is not ill-shaped, and the forehead is not truly flattened or very retreating, its really well-formed curve being simply disguised by the mass of bone which is built up against it (Fig. 16).

      But the roofs of the orbits rise more obliquely into the cranial cavity, thus diminishing the space for the lower part of the anterior lobes of the brain, and the absolute capacity of the cranium is far less than that of Man. So far as I am aware, no human cranium belonging to an adult man has yet been observed with a less cubical capacity than 62 cubic inches, the smallest cranium observed in any race of men by Morton, measuring 63 cubic inches; while, on the other hand, the most capacious Gorilla skull yet measured has a content of not more than 3412 cubic inches. Let us assume, for simplicity’s sake, that the lowest Man’s skull has twice the capacity of that of the highest Gorilla.[28]

      No doubt, this is a very striking difference, but it loses much of its apparent systematic value, when viewed by the light of certain other equally indubitable facts respecting cranial capacities.

      The first of these is, that the difference in the volume of the cranial cavity of different races of mankind is far greater, absolutely, than that between the lowest Man and the highest Ape, while, relatively, it is about the same. For the largest human skull measured by Morton contained 114 cubic inches, that is to say, had very nearly double the capacity of the smallest; while its absolute preponderance, of 52 cubic inches—is far greater than that by which the lowest adult male human cranium surpasses the largest of the Gorillas (62–3412; = 27112). Secondly, the adult crania of Gorillas which have as yet been measured differ among themselves by nearly one-third, the maximum capacity being 34.5 cubic inches, the minimum 24 cubic inches; and, thirdly, after making all due allowance for difference of size, the cranial capacities of some of the lower Apes fall nearly as much, relatively, below those of the higher Apes as the latter fall below Man.

      Thus, even in the important matter of cranial capacity, Men differ more widely from one another than they do from the Apes; while the lowest Apes differ as much, in proportion, from the highest, as the latter does from Man. The last proposition is still better illustrated by the study of the modifications which other parts of the cranium undergo in the Simian series.

      It