Elements of Chemistry, In a New Systematic Order, Containing all the Modern Discoveries. Antoine Laurent Lavoisier. Читать онлайн. Newlib. NEWLIB.NET

Автор: Antoine Laurent Lavoisier
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4057664144393
Скачать книгу
rel="nofollow" href="#ulink_11d3a9e4-d6b8-5dfd-8f9b-cb1b0e3519c3">Table of Contents

      That every body, whether solid or fluid, is augmented in all its dimensions by any increase of its sensible heat, was long ago fully established as a physical axiom, or universal proposition, by the celebrated Boerhaave. Such facts as have been adduced for controverting the generality of this principle offer only fallacious results, or, at least, such as are so complicated with foreign circumstances as to mislead the judgment: But, when we separately consider the effects, so as to deduce each from the cause to which they separately belong, it is easy to perceive that the separation of particles by heat is a constant and general law of nature.

      When we have heated a solid body to a certain degree, and have thereby caused its particles to separate from each other, if we allow the body to cool, its particles again approach each other in the same proportion in which they were separated by the increased temperature; the body returns through the same degrees of expansion which it before extended through; and, if it be brought back to the same temperature from which we set out at the commencement of the experiment, it recovers exactly the same dimensions which it formerly occupied. But, as we are still very far from being able to arrive at the degree of absolute cold, or deprivation of all heat, being unacquainted with any degree of coldness which we cannot suppose capable of still farther augmentation, it follows, that we are still incapable of causing the ultimate particles of bodies to approach each other as near as is possible; and, consequently, that the particles of all bodies do not touch each other in any state hitherto known, which, tho' a very singular conclusion, is yet impossible to be denied.

      It is supposed, that, since the particles of bodies are thus continually impelled by heat to separate from each other, they would have no connection between themselves; and, of consequence, that there could be no solidity in nature, unless they were held together by some other power which tends to unite them, and, so to speak, to chain them together; which power, whatever be its cause, or manner of operation, we name Attraction.

      Thus the particles of all bodies may be considered as subjected to the action of two opposite powers, the one repulsive, the other attractive, between which they remain in equilibrio. So long as the attractive force remains stronger, the body must continue in a state of solidity; but if, on the contrary, heat has so far removed these particles from each other, as to place them beyond the sphere of attraction, they lose the adhesion they before had with each other, and the body ceases to be solid.

      The same may be affirmed of all bodies in nature: They are either solid or liquid, or in the state of elastic aëriform vapour, according to the proportion which takes place between the attractive force inherent in their particles, and the repulsive power of the heat acting upon these; or, what amounts to the same thing, in proportion to the degree of heat to which they are exposed.

      It is difficult to comprehend these phenomena, without admitting them as the effects of a real and material substance, or very subtile fluid, which, insinuating itself between the particles of bodies, separates them from each other; and, even allowing the existence of this fluid to be hypothetical, we shall see in the sequel, that it explains the phenomena of nature in a very satisfactory manner.

      In the present state of our knowledge, we are unable to determine whether light be a modification of caloric, or if caloric be, on the contrary, a modification of light. This, however, is indisputable, that, in a system where only decided facts are admissible, and where we avoid, as far as possible, to suppose any thing to be that is not really known to exist, we ought provisionally to distinguish, by distinct terms, such things as are known to produce different effects. We therefore distinguish light from caloric; though we do not therefore deny that these have certain qualities in common, and that, in certain circumstances, they combine with other bodies almost in the same manner, and produce, in part, the same effects.

      What I have already said may suffice to determine the idea affixed to the word caloric; but there remains a more difficult attempt, which is, to give a just conception of the manner in which caloric acts upon other bodies. Since this subtile matter penetrates through the pores of all known substances; since there are no vessels through which it cannot escape, and, consequently, as there are none which are capable of retaining it, we can only come at the knowledge of its properties by effects which are fleeting, and difficultly ascertainable. It is in these things which we neither see nor feel, that it is especially necessary to guard against the extravagancy of our imagination, which forever inclines to step beyond the bounds of truth, and is very difficultly restrained within the narrow line of facts.

      We have already seen, that the same body becomes solid, or fluid, or aëriform, according to the quantity of caloric by which it is penetrated; or, to speak more strictly, according as the repulsive force exerted by the caloric is equal to, stronger, or weaker, than the attraction of the particles of the body it acts upon.

      But, if these two powers only existed, bodies would become liquid at an indivisible degree of the thermometer, and would almost instantaneously pass from the solid state of aggregation to that of aëriform elasticity. Thus water, for instance, at the very moment when it ceases to be ice, would begin to boil, and would be transformed into an aëriform fluid, having its particles scattered indefinitely through the surrounding space. That this does not happen, must depend upon the action of some third power. The pressure of the atmosphere prevents this separation, and causes the water to remain in the liquid state till it be raised to 80° of temperature (212°) above zero of the French thermometer, the quantity of caloric which it receives in the lowest temperature being insufficient to overcome the pressure of the atmosphere.

      Whence it appears that, without this atmospheric pressure, we should not have any permanent liquid, and should only be able to see bodies in that state of existence in the very instant of melting, as the smallest additional caloric would instantly separate their particles, and dissipate them through the surrounding medium. Besides, without this atmospheric pressure, we should not even have any aëriform fluids, strictly speaking, because the moment the force of attraction is overcome by the repulsive power of the caloric, the particles would separate themselves indefinitely, having nothing to give limits to their expansion, unless their own gravity might collect them together, so as to form an atmosphere.

      Simple