Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали. Скотт Бембенек. Читать онлайн. Newlib. NEWLIB.NET

Автор: Скотт Бембенек
Издательство: Издательство АСТ
Серия: Удивительная Вселенная
Жанр произведения: Физика
Год издания: 2017
isbn: 978-5-17-119799-5
Скачать книгу
для свободного падения и движения по наклонной плоскости. Что же, оказывается, гипотезы Галилео были верны.

      К данному моменту вас не должно удивлять, что скорость объекта, катящегося по наклоненной плоскости[19], увеличивается по мере снижения высоты. Максимальная скорость достигается в самой низкой точке, а время падения (время, которое требуется, чтобы скатиться к основанию наклонной плоскости) не зависит от массы, но непосредственно связано с начальной высотой, как и для (общего случая) маятника, и для свободно падающего объекта.

      Так, для всех трех систем результаты одинаковы из-за того, что природа требует сохранения энергии. Кстати, мы не обсуждали подробно, что же в действительно влечет за собой это самое сохранение энергии; похоже, я немного затянул. Тем не менее для обсуждаемых систем у нас есть два фундаментальных типа отношений между высотой и скоростью:

      – более низкая высота (от отправной точки) означает, что объект перемещается быстрее – это значит, что его наивысшая скорость будет достигнута в самой низкой точке;

      – чем выше начальная высота, тем больше времени будет затрачено на падение, за исключением изохронного маятника, у которого время падения одинаково для каждой высоты.

      Давайте посмотрим на другую версию эксперимента Галилео с маятником.

      Повторное рассмотрение маятника

      В эксперименте с «прерванным маятником» Галилео раскрыл еще больше последствий сохранения энергии. Вспомните, что маятник Галилео был просто свинцовым шаром, весящим одну-две унции, подвешенным на нити. Теперь вообразите маятник, спущенный от гвоздя, вбитого в стену, – маятник, который может свободно качаться из одной стороны в другую. От его точки покоя (где он висит вертикально) мы перемещаем маятник, скажем, вправо на некоторую начальную высоту и затем выпускаем его, не придавая ему ускорения[20].

      Поскольку маятник качается справа налево, мы видим, что он достигает своей конечной высоты. Галилео, вероятно, делал это много раз на различных начальных высотах и каждый раз получал один и тот же результат: начальная высота всегда равняется конечной. Ну, честно говоря, конечная высота, вероятно, немного ниже из-за некоторого сопротивления воздуха, но Галилео вывел, что пренебрежение этим приведет к равным высотам, что и было ключевым в этом исследовании.

      Но тогда Галилео добавил к оригинальному эксперименту поворот. Теперь вообразите те же условия, за исключением того, что на этот раз мы забиваем гвоздь в стену таким образом, что струна неизбежно столкнется с ним, поскольку маятник качается справа налево (рис. 2.4). Хотя колебание маятника изменились из-за гвоздя, мы опять понимаем, что начальная высота и конечная равны. Однако что будет, если мы поменяем положение гвоздя? Это не имеет значения. Нить просто зацепится за гвоздь, колебание изменится, и маятник достигнет своей конечной высоты, которая (как и прежде) совпадет с начальной высотой.

      Рис. 2.4.


<p>19</p>

Интересно отметить, что в работе «В движении», которая отражает научную деятельность Галилео во время его профессорства в Пизе (1589–1592), Галилео думал, что скорость движения объекта на наклонной плоскости обратно пропорциональна длине наклона. Тот факт, что он не мог правильно рассчитать движение на наклонной плоскости (так как он не признал важности ускорения из-за силы тяжести), вероятно, был причиной, по которой Галилео никогда не издавал это труд. Однако к тому времени, когда он написал «Диалоги о двух главнейших системах мира», Галилео уже пришел к верным выводам: для постоянного ускорения скорость v падающего объекта пропорциональна времени t. Другими словами, v ~ t. Поэтому скорость падающего объекта увеличивается, когда высота уменьшается.

<p>20</p>

Подтолкнув его, мы изменим описанные результаты, так как добавим энергии в систему.