The Way To Geometry. Petrus Ramus. Читать онлайн. Newlib. NEWLIB.NET

Автор: Petrus Ramus
Издательство: Public Domain
Серия:
Жанр произведения: Математика
Год издания: 0
isbn:
Скачать книгу
thereof: This is by Archimedes assumed especially at the 9, 10, 11, and 13 Theoreme of his Isorropicks, or Æquiponderants.

Centers in Diameters.

      This consectary, saith the learned Rod. Snellius, is as it were a kinde of invention of the center. For where the diameters doe meete and cutt one another, there must the center needes bee. The cause of this is for that in every figure there is but one center only: And all the diameters, as before was said, must needes passe by that center.

      And

      8. It is in the meeting of the diameters.

      As in the examples following. This also followeth out of the same definition of the diameter. For seeing that every diameter passeth by the center: The center must needes be common to all the diameters: and therefore it must also needs be in the meeting of them: Otherwise there should be divers centers of one and the same figure. This also doth the same Archimedes propound in the same words in the 8. and 12 theoremes of the same booke, speaking of Parallelogrammes and Triangles.

Meeting of Diameters.

      9. The Altitude is a perpendicular line falling from the toppe of the figure to the base.

      Altitudo, the altitude, or heigth, or the depth: [For that, as hereafter shall bee taught, is but Altitudo versa, an heighth with the heeles upward.] As in the figures following are ae, io, uy, or sr. Neither is it any matter whether the base be the same with the figure, or be continued or drawne out longer, as in a blunt angled triangle, when the base is at the blunt corner, as here in the triangle, aei, is ao.

Altitudes.

      10. An ordinate figure, is a figure whose bounds are equall and angles equall.

      In plaines the Equilater triangle is onely an ordinate figure, the rest are all inordinate: In quadrangles, the Quadrate is ordinate, all other of that sort are inordinate: In every sort of Multangles, or many cornered figures one may be an ordinate. In crooked lined figures the Circle is ordinate, because it is conteined with equall bounds, (one bound alwaies equall to it selfe being taken for infinite many,) because it is equiangled, seeing (although in deede there be in it no angle) the inclination notwithstanding is every where alike and equall, and as it were the angle of the perphery be alwaies alike unto it selfe: whereupon of Plato and Plutarch a circle is said to be Polygonia, a multangle; and of Aristotle Holegonia, a totangle, nothing else but one whole angle. In mingled-lined figures there is nothing that is ordinate: In solid bodies, and pyramids the Tetrahedrum is ordinate: Of Prismas, the Cube: of Polyhedrum's, three onely are ordinate, the octahedrum, the Dodecahedrum, and the Icosahedrum. In oblique-lined bodies, the spheare is concluded to be ordinate, by the same argument that a circle was made to bee ordinate.

      11. A prime or first figure, is a figure which cannot be divided into any other figures more simple then it selfe.

      So in plaines the triangle is a prime figure, because it cannot be divided into any other more simple figure although it may be cut many waies: And in solids, the Pyramis is a first figure: Because it cannot be divided into a more simple solid figure, although it may be divided into an infinite sort of other figures: Of the Triangle all plaines are made; as of a Pyramis all bodies or solids are compounded; such are aei. and aeio.

Prime Figures.

      12. A rationall figure is that which is comprehended of a base and height rationall betweene themselves.

      So Euclide, at the 1. d. ij. saith, that a rightangled parallelogramme is comprehended of two right lines perpendicular one to another, videlicet one multiplied by the other. For Geometricall comprehension is sometimes as it were in numbers a multiplication: Therefore if yee shall grant the base and height to bee rationalls betweene themselves, that their reason I meane may be expressed by a number of the assigned measure, then the numbers of their sides being multiplyed one by another, the bignesse of the figure shall be expressed. Therefore a Rationall figure is made by the multiplying of two rationall sides betweene themselves.

      Therefore,

      13. The number of a rationall figure, is called a Figurate number: And the numbers of which it is made, the Sides of the figurate.

      As if a Right angled parallelogramme be comprehended of the base foure, and the height three, the Rationall made shall be 12. which wee here call the figurate: and 4. and 3. of which it was made, we name sides.

      14. Isoperimetrall figures, are figures of equall perimeter.

      This is nothing else but an interpretation of the Greeke word; So a triangle of 16. foote about, is a isoperimeter to a triangle 16. foote about, to a quadrate 16. foote about, and to a circle 16. foote about.

15. Of isoperimetralls homogenealls that which is most ordinate, is greatest: Of ordinate isoperimetralls heterogenealls, that is greatest, which hath most bounds.

      So an equilater triangle shall bee greater then an isoperimeter inequilater triangle; and an equicrurall, greater then an unequicrurall: so in quadrangles, the quadrate is greater then that which is not a quadrate: so an oblong more ordinate, is greater then an oblong lesse ordinate. So of those figures which are heterogeneall ordinates, the quadrate is greater then the Triangle: And the Circle, then the Quadrate.

      16. If prime figures be of equall height, they are in reason one unto another, as their bases are: And contrariwise.

Areas.

      The proportion of first figures is here twofold; the first is direct in those which are of equall height. In Arithmeticke we learned; That if one number doe multiply many numbers, the products shall be proportionall unto the numbers, multiplyed. From hence in rationall figures the content of those which are of equall height is to bee expressed by a number. As in two right angled parallelogrammes, let 4. the same height, multiply 2. and 3. the bases: The products 8. and 12. the parallelogrammes made, are directly proportionall unto the bases 2. and 3. Therefore as 2. is unto 3. so is 8. unto 12. The same shall afterward appeare in right Prismes and Cylinders. In plaines, Parallelogramms are the doubles of triangles: In solids, Prismes are the triples of pyramides: Cylinders, the triples of Cones. The converse of this element is plaine out of the former also: First figures if they be in reason one to another as their bases are, then are they of equall height, to witt when their products are proportionall unto the multiplyed, the same number did multiply them.

      Therefore,

      17. If prime figures of equall heighth have also equall bases, they are equall.

      [The reason is, because then those two figures compared, have equall sides, which doe make them equall betweene themselves; For the parts of the one applyed or laid unto the parts of the other, doe fill an equall place, as was taught at the 10. e. j. Sn.] So Triangles, so Parallelogrammes, and so other figures proposed are equalled upon an equall base.

      18. If prime figures be reciprocall in base and height, they are equall: And contrariwise.

Equal Parallelogrammes.

      The second kind of proportion of first figures is reciprocall. This kinde of proportion rationall and expressible by a number, is not to be had in first figures themselves: but in those that are equally manifold to them, as was taught even now in direct proportion: As for example, Let these two right angled parallelogrammes, unequall in bases and heighths 3, 8, 4, 6, be as heere thou seest: The proportion reciprocall is thus, As 3 the base of the one, is unto 4, the base of the other: so is 6. the height of the one is to 8. the height of the other: And the parallelogrammes are equall, viz. 24. and 24. Againe, let two solids of unequall bases & heights (for here also the base is taken for the length and heighth) be 12, 2, 3, 6, 3, 4. The solids themselves shall be 72. and 72, as here thou seest; and the proportion of the bases and heights likewise is reciprocall: For as 24, is unto 18, so is 4, unto 3. The cause