The care of both the song cycles and the land – known as Country – rests in the hands of custodians they call Maja, who are selected from the community not because of possessions or family connections, as is common in the West, but purely because of their wisdom and personality. There are different songlines in different places; along the Dampier Peninsula coast they are called ululong, whereas the song cycle that extends east is dabber dabber goon, which reaches past Uluru (which we used to call Ayer’s Rock) and on to Australia’s Pacific coast. At the core of these ancient songs is a mystical being known as Marala, a spirit that laid down the law and established the codes of conduct and morality. The legends about Marala are endless; many of them have been documented by anthropologists, though most remain secret among the tribes and are never vouchsafed to outsiders. One of the songs tells about Marala fighting with Warragunna, the eagle-man, and goes on for hours. Now, it is tempting to dismiss all this as the stuff of legend; as the wild imaginings of a religious people who are now out of their time. Yet their religion has a lot more going for it than any of ours, for they have physical evidence. Marala is a gigantic emu man, and you can see precisely where he walked. There, in the rocks, are the three-toed footprints. There are even some stony giants, weathered in the fierce Sun, that look like petrified monsters. The Aboriginals even know where Marala sat down with Warragunna, because there are the signs of the eagle-man’s feathers clearly preserved in the solid rock. We, with our palæontological insights, know that the footprints of the emu man Marala are actually those of a huge three-toed dinosaur named Megalosauropus. We can also confidently conclude that the feathery impressions of that gigantic eagle are really the fossilized remains of bennettitalean plants, related to the present-day cycads from which we obtain sago, for those leaves really do look like the feathers of a gigantic eagle. The thought processes of Aboriginal people are very different to ours and are hard to follow. A statement by an Aboriginal elder named Lulu from the Gularabulu tribe of the Nyikina people, an ancient community that still lives in the Stone-Age traditions, stated that: ‘The Country now comes from Bugarri-Garriand [dreamtime] and it was made by all the dreamtime ancestors, who left their tracks and statues behind and gave us our law. We still follow that law, which tells us how to look after the Country and how to keep it alive.’14
So here we have an entire way of life and an ancient culture that are based on detailed knowledge of dinosaur footprints and the fossilized remains of Cretaceous plants. Australian Aborigines know their Country intimately, and knew about the remains left by prehistoric monstrous beings thousands of years earlier than we did in the West. The authorities now take these remains seriously. In 2000, an Aborigine from Broome named Michael Latham admitted cutting stegosaur footprints from the sandstone strata, when the tide was low, using an angle-grinder. He was jailed for two years.
The first records from Europeans about the Australian dinosaur tracks were written around 1900 when an immigrant from Ireland, Daisy Bates, spent three months on a mission station in Aboriginal territory. She later returned to the Roebuck Plains Station with her husband and son, and devoted herself to a study of the indigenous coastal communities. She observed many of the areas where footprints were visible. Then, in 1935, Catherine Milner and her young twin daughters discovered some on their own. They wrote later that they had come across the footprints one morning when the tide was low, and they had looked as if ‘whatever had made them had just passed by, so clear and perfect they were.’ Little wonder the tracks were regarded by the Aboriginal people as clear evidence of events.15
The only fossilized remains of actual dinosaurs in Australia are of occasional scattered bones and teeth; yet there is now a growing understanding of the variety of the dinosaur population derived from the fossilized trackways set in stone. They are usually left undisturbed for visitors to enjoy, though this inevitably exposes them to damage. Trackways left by theropod dinosaurs were discovered at the eastern side of Australia when palæontologists first discovered the footprints of a theropod dinosaur in tidal strata at Flat Rocks, Victoria, in 2006. Thousands of scattered bones and teeth have been found in the area, and the dinosaur footprints – measuring about 1 foot (30 cm) across – were left intact for visitors; however, there was no sign pointing them out. In December 2017 someone took a hammer and chisel and chopped out the toes, leaving them scattered nearby. The local Park Ranger, Brian Martin, said: ‘They would need to know exactly where it is to find it. Most people quite easily walk right past it,’ he said. This time the vandals didn’t.
We are beginning to understand how huge some of these monsters were. The massive brachiosaurs which appear so frequently in documentaries and pictures about dinosaurs were colossal creatures measuring about 85 feet (26 metres) long and weighing at least 50 tons, their footprints measuring less than 3 feet (90 cm) in length. Similarly, some unprecedently gigantic footprints were discovered in Mongolia in 2016, each measuring 3 feet 6 inches (1.06 metres) long, which caused considerable surprise among palæontologists. There are Australian huge dinosaur footprints that measure 5 feet 7 inches (1.7 metres) from heel to toe. Nothing so vast has ever been discovered elsewhere.16
Fossilized shells had been known for centuries and, as we have seen, they were conventionally interpreted as a natural consequence of the biblical flood. They were written about as radical new thinkers appeared on the European scene, and they caught the attention of Leonardo da Vinci around 1508, two centuries before the Enlightenment. Leonardo was not inclined to believe that they were the aftermath of the biblical accounts of the Noahic flood. Instead, he thought that their presence showed that the surface of the Earth had changed over time, and the fossilized remains represented an earlier, watery phase of the Earth’s ancient history. A generation later, a French Huguenot hydraulics engineer and ceramicist named Bernard Palissy wrote on the origins of fossils. He too believed that they were not the result of a flood, but had formed naturally in a manner reminiscent of that recorded by Avicenna. Palissy thought that mineral-rich water developed ‘congelative properties’ that transformed once-living creatures to stone. The first report of fossilized bones in Europe dates from 1605, when a British expatriate theologian named Richard Verstegan (living in Antwerp) became interested in fossils and, for the first time, recognized bones and teeth for what they were.17
Verstegan portrayed ichthyosaur vertebræ in a book, though he interpreted them as the remains of fish, which he took as evidence that Britain and mainland Europe were once connected.18
Fossils were collected by many enthusiasts during this period, though the first time they were scientifically described was by Robert Hooke in 1665. Hooke was a remarkable polymath and is best known for his role as the founding father of the science of the microscope. In his large folio volume Micrographia, published in 1665, Hooke devoted a section to fossils. His microscope showed him that fossilized wood had a structure identical to that of wood taken from a tree nearby, and he described the fossil in terms that fit perfectly with our modern understanding.
Hooke also featured a fine image of the microscopic spheres that comprise limestone. His drawing, captioned ‘Kettering-stone’, was described in his text: ‘This stone is brought from Kettering in Northampton-shire, and digg’d out of a Quarry, as I am inform’d.’19
His specimen was demonstrated to the Fellows of the Royal Society on Sunday, April 15, 1663, and attracted much attention. That was an auspicious date; his other demonstration that day was of thin sections of cork. Hooke observed that the specimen (from a wine bottle) showed itself to comprise numerous small boxes, the cell walls of the cork. The room-like nature of each component led Hooke to call them ‘cells’ – and this is the term that has come down to us today for all the cells that we