В специальной теории относительности движение наблюдателей описывается в терминах «систем отсчета». Чтобы наглядно представить себе роль системы отсчета, вообразим скорый поезд. Если все пассажиры уселись на свои места и багаж аккуратно уложен, все в поезде находится в покое по отношению к стенкам и полу вагона. Но ведь поезд при этом быстро мчится по отношению к Земле. Представим себе, что он движется по прямой с постоянной скоростью. Чтобы вполне точно описать понятие системы отсчета, мы вдобавок должны допустить еще полное отсутствие поля тяготения. То есть вместо поезда, мчащегося с постоянной скоростью по земной поверхности, лучше бы представить себе космическую ракету, летящую в пустом пространстве. Правда, поле силы тяжести Земли достаточно слабое, чтобы для наших целей мы в поезде могли не принимать его во внимание: тогда можно обойтись специальной теорией относительности, не прибегая к общей.
Итак, если мы не будем смотреть в окно, нам трудно будет сказать, с какой скоростью движется поезд. А если допустить, что поезд имеет фантастически мягкую подвеску, рельсовый путь – невообразимо гладкий, а шторы на всех окнах наглухо опущены, будет, пожалуй, невозможно определить, движется ли наш поезд вообще. Поезд представляет собой систему отсчета – в этой системе пассажиры могут естественно определить, движется ли что-нибудь внутри вагона. Но в нашей идеализированной ситуации они не смогут сказать, движется ли сам поезд. Вот если кто-то отправится на прогулку по проходу между креслами, пассажиры, конечно, будут это знать: он же перемещается относительно их системы отсчета! Больше того, любое физическое явление, происходящее внутри поезда, например отскоки от пола мячика или вращение спиннера, будет с точки зрения пассажира происходить всегда одинаково, независимо от того, движется поезд или стоит на месте. Короче говоря, система отсчета – это способ, которым наблюдатель воспринимает связанное с ним пространство и время в состоянии равномерного движения, то есть когда поезд не ускоряет и не замедляет свой ход, и к тому же не поворачивает. Как только что-то из перечисленного произойдет, пассажиры тут же это заметят: например, резкое ускорение вдавит их в спинки кресел, а при торможении их бросит вперед.
Давайте теперь представим себе, что наш поезд, не останавливаясь и даже не замедляя хода, проходит мимо станции. Пассажиры – назовем их Алиса, Алан и Авери – это наблюдатели в движущейся системе отсчета, которую мы назовем системой A. Тем временем их друзья Боб, Бетси и Билл стоят на платформе и их система отсчета, которую мы будем называть системой Б, неподвижна. Чтобы изобразить эти системы графически, будем отмечать положения, измеренные в системе Б, по горизонтальной координатной оси, а измеренное в этой системе время по вертикальной. Теперь нанесем на координатную плоскость траектории наших наблюдателей в пространстве и во времени: получается, что с течением времени наблюдатели в