Предсказываем тренды. С Rattle и R в мир моделей классификации. Александр Фоменко. Читать онлайн. Newlib. NEWLIB.NET

Автор: Александр Фоменко
Издательство: Издательские решения
Серия:
Жанр произведения: Компьютеры: прочее
Год издания: 0
isbn: 9785449663054
Скачать книгу
Фрейм данных, представленный в Rattle

      Термины выборка (sample), наблюдение (observation), пример, экземпляр (instance) относится к отдельной строке данных. Термин sample также может относить к подмножеству наблюдений, которые объединены, например целью последующего использования – обучающая выборка или обучающий набор данных. Значение термина выборка будет понятно из контекста употребления термина.

      Обучающий набор содержит данные, которые использовались для обучения модели, в то время как тестовый и проверочный наборы используются исключительно для оценки результативности модели.

      Предикторы, независимые переменные, атрибуты или дескрипторы являются данными, которые используются в качестве входных переменных в уравнении предсказания. На рис.1.1 показаны три предиктора, которые играют роль в модели «входных переменных».

      Результат, зависимая переменная, целевая переменная, класс, отклик (response) относится к результирующему событию или количеству, которое предсказывается.

      У числовой переменной есть значение, которое является целым числом или вещественным числом, такими как цена валютной пары, объем торгов, процентная ставка. Числовые переменные также известны как количественные переменные. Числовые переменные могут быть дискретными (целыми числами) или непрерывными (действительными). Например, котировка валютной пары. У числовой переменной обычно имеется числовой масштаб. Для валютной пары eurusd числовой масштаб – это диапазон от 0.5 до 2.0, в который укладываются все имевшие место значения цен на эту валютную пару. Совершенно другой масштаб у валютной пары usdjpy – величины цен на эту валютную пару почти на два порядка больше, чем на eurusd.

      Категориальные (categorical) данные, известные также как номинальные атрибуты, качественные данные, факторы имеют значения, которые не имеют масштаба. «Лонг/шорт», день недели являются примерами таких данных. «Лонг» не больше и не меньше «шорта». Категориальная переменная, которая имеет два значения, как у нас – (лонг, шорт) называют бинарной (двоичной) переменной. Категориальная переменная «день недели» имеет семь значений.

      Категориальные переменные могут быть упорядочены, как в нашем примере Weekdays (дни недели). Понедельник не больше и не меньше вторника, но может быть важным для модели, чтобы ей было известно, что вторник всегда следует после понедельника.

      Построение модели, обучение модели, тренировка модели или оценка параметров – все это относится к процессу определению параметров в уравнении модели.

      1.4. Используемые наборы данных

      Далее по тексту будут использоваться следующие наборы данных:

      audit набор данных, поставляемый в составе дистрибутива Rattle.

      weather набор данных, поставляемый в составе дистрибутива Rattle.

      kot60_110101_131231_UE. txt

      На основе регрессионной модели попытаемся сделать «типичный мультивалютник»:

      – целевая переменная – EURUSD;

      – предикторы – GBPUSD, USDCHF, USDJPY, EURGBP, USDCAD.

      zz_1_5.RData

      Для классификационной модели