The Mind and Its Education. George Herbert Betts. Читать онлайн. Newlib. NEWLIB.NET

Автор: George Herbert Betts
Издательство: Public Domain
Серия:
Жанр произведения: Зарубежная образовательная литература
Год издания: 0
isbn:
Скачать книгу
least, in every nervous system. The histologist tells us that in the nervous system of every child there are tens of thousands of cells which are so immature and undeveloped that they are useless; indeed, this is the case to some degree in every adult person's nervous system as well. Thus each individual has inherent in his nervous system potentialities of which he has never taken advantage, the utilizing of which may make him a genius and the neglecting of which will certainly leave him on the plane of mediocrity. The first problem in education, then, is to take the unripe and inefficient nervous system and so develop it in connection with the growing mind that the possibilities which nature has stored in it shall become actualities.

      Undeveloped Cells.—Professor Donaldson tells us on this point that: "At birth, and for a long time after, many [nervous] systems contain cell elements which are more or less immature, not forming a functional part of the tissue, and yet under some conditions capable of further development.... For the cells which are continually appearing in the developing cortex no other source is known than the nuclei or granules found there in its earliest stages. These elements are metamorphosed neuroblasts—that is, elementary cells out of which the nervous matter is developed—which have shrunken to a volume less than that which they had at first, and which remain small until, in the subsequent process of enlargement necessary for their full development, they expand into well-marked cells. Elements intermediate between these granules and the fully developed cells are always found, even in mature brains, and therefore it is inferred that the latter are derived from the former. The appearances there also lead to the conclusion that many elements which might possibly develop in any given case are far beyond the number that actually does so.... The possible number of cells latent and functional in the central system is early fixed. At any age this number is accordingly represented by the granules as well as by the cells which have already undergone further development. During growth the proportion of developed cells increases, and sometimes, owing to the failure to recognize potential nerve cells in the granules, the impression is carried away that this increase implies the formation of new elements. As has been shown, such is not the case."1

       Development of Nerve Fibers.—The nerve fibers, no less than the cells, must go through a process of development. It has already been shown that the fibers are the result of a branching of cells. At birth many of the cells have not yet thrown out branches, and hence the fibers are lacking; while many of those which are already grown out are not sufficiently developed to transmit impulses accurately. Thus it has been found that most children at birth are able to support the weight of the body for several seconds by clasping the fingers around a small rod, but it takes about a year for the child to become able to stand. It is evident that it requires more actual strength to cling to a rod than to stand; hence the conclusion is that the difference is in the earlier development of the nerve centers which have to do with clasping than of those concerned in standing. Likewise the child's first attempts to feed himself or do any one of the thousand little things about which he is so awkward, are partial failures not so much because he has not had practice as because his nervous machinery connected with those movements is not yet developed sufficiently to enable him to be accurate. His brain is in a condition which Flechsig calls "unripe." How, then, shall the undeveloped cells and system ripen? How shall the undeveloped cells and fibers grow to full maturity and efficiency?

      2. DEVELOPMENT OF NERVOUS SYSTEM THROUGH USE

      Importance of Stimulus and Response.—Like all other tissues of the body, the nerve cells and fibers are developed by judicious use. The sensory and association centers require the constant stimulus of nerve currents running in from the various end-organs, and the motor centers require the constant stimulus of currents running from them out to the muscles. In other words, the conditions upon which both motor and sensory development depend are: (1) A rich environment of sights and sounds and tastes and smells, and everything else which serves as proper stimulus to the sense organs, and to every form of intellectual and social interest; and (2) no less important, an opportunity for the freest and most complete forms of response and motor activity.

      Fig. 15.—Schematic transverse section of the human brain showing the projection of the motor fibers, their crossing in the neighborhood of the medulla, and their termination in the different areas of localized function in the cortex. S, fissure of Sylvius; M, the medulla; VII, the roots of the facial nerves.

      An illustration of the effects of the lack of sensory stimuli on the cortex is well shown in the case of Laura Bridgman, whose brain was studied by Professor Donaldson after her death. Laura Bridgman was born a normal child, and developed as other children do up to the age of nearly three years. At this time, through an attack of scarlet fever, she lost her hearing completely and also the sight of her left eye. Her right eye was so badly affected that she could see but little; and it, too, became entirely blind when she was eight. She lived in this condition until she was sixty years old, when she died. Professor Donaldson submitted the cortex of her brain to a most careful examination, also comparing the corresponding areas on the two hemispheres with each other. He found that as a whole the cortex was thinner than in the case of normal individuals. He found also that the cortical area connected with the left eye—namely, the right occipital region—was much thinner than that for the right eye, which had retained its sight longer than the other. He says: "It is interesting to notice that those parts of the cortex which, according to the current view, were associated with the defective sense organs were also particularly thin. The cause of this thinness was found to be due, at least in part, to the small size of the nerve cells there present. Not only were the large and medium-sized cells smaller, but the impression made on the observer was that they were also less numerous than in the normal cortex."

       Effect of Sensory Stimuli.—No doubt if we could examine the brain of a person who has grown up in an environment rich in stimuli to the eye, where nature, earth, and sky have presented a changing panorama of color and form to attract the eye; where all the sounds of nature, from the chirp of the insect to the roar of the waves and the murmur of the breeze, and from the softest tones of the voice to the mightiest sweep of the great orchestra, have challenged the ear; where many and varied odors and perfumes have assailed the nostrils; where a great range of tastes have tempted the palate; where many varieties of touch and temperature sensations have been experienced—no doubt if we could examine such a brain we should find the sensory areas of the cortex excelling in thickness because its cells were well developed and full sized from the currents which had been pouring into them from the outside world. On the other hand, if we could examine a cortex which had lacked any one of these stimuli, we should find some area in it undeveloped because of this deficiency. Its owner therefore possesses but the fraction of a brain, and would in a corresponding degree find his mind incomplete.

       Necessity for Motor Activity.—Likewise in the case of the motor areas. Pity the boy or girl who has been deprived of the opportunity to use every muscle to the fullest extent in the unrestricted plays and games of childhood. For where such activities are not wide in their scope, there some areas of the cortex will remain undeveloped, because unused, and the person will be handicapped later in his life from lack of skill in the activities depending on these centers. Halleck says in this connection: "If we could examine the developing motor region with a microscope of sufficient magnifying power, it is conceivable that we might learn wherein the modification due to exercise consists. We might also, under such conditions, be able to say, 'This is the motor region of a piano player; the modifications here correspond precisely to those necessary for controlling such movements of the hand.' Or, 'This is the motor tract of a blacksmith; this, of an engraver; and these must be the cells which govern the vocal organs of an orator.'" Whether or not the microscope will ever reveal such things to us, there is no doubt that the conditions suggested exist, and that back of every inefficient and awkward attempt at physical control lies a motor area with its cells undeveloped by use. No wonder that our processes of learning physical adjustment and control are slow, for they are a growth in the


<p>1</p>

Donaldson, "The Growth of the Brain," pp. 74, 238.