– Unstructured approach.
Structured approach:
The structured approach to inquiry is usually classified as quantitative research. Here everything that forms the research process such as objectives, design, sample, and questions that you plan to ask. It is more appropriate to determine the extent of a problem, issue or phenomenon by quantifying the variation, e.g., how many people have a particular problem? How many people hold a particular attitude?
Unstructured approach:
The unstructured approach to inquiry is usually classified as qualitative research. This approach allows flexibility in all aspects of the research process. It is more appropriate to explore the nature of a problem, issue or phenomenon without quantifying it. The main objective is to describe the variation in a phenomenon, situation or attitude, e.g., description of an observed situation, the historical enumeration of events, an account of different opinions different people have about an issue, description of working condition in a particular industry.
Both approaches have their place in research. Both have their strengths and weaknesses. In many studies you have to combine both qualitative and quantitative approaches. For example, suppose you have to find the types of cuisine/accommodation available in a city and the extent of their popularity. Types of cuisine is the qualitative aspect of the study as finding out about them entails description of culture and cuisine. The extent of their popularity is the quantitative aspect as it involves estimating the number of people who visit a restaurant serving such cuisine and calculating the other indicators that reflect the extent of popularity [2, 3, 4].
Science
Here are some common definitions of science:
– Branch of knowledge or study dealing with a body of facts or truths systematically arranged and showing the operation of general laws, e.g., the mathematical science;
– Systemic knowledge of the physical or material world gained through observations and experimentation;
– Systematized knowledge in general;
– Any of the branches of natural or physical sciences;
– A particular branch of knowledge;
– Knowledge, as of facts or principles; knowledge gained by systematic study;
– Skill, esp. reflecting a precise application of facts or principle; proficiency.
The word Science comes from Latin word "scientia" meaning "knowledge" and in the broadest sense it is any systematic knowledge-base or prescriptive practice being capable of resulting in prediction. This is why science is termed as highly skilled technique or practice. However, in more contemporary terms, science is a system of acquiring knowledge based on scientific process or method in order to organize body of knowledge gained through research. Science remains a continuing effort on the part of human being to discover and increase knowledge through research. Scientists can make observations, record measureable data related to their observations, analyze the information in hand in order to construct theoretical explanations of phenomenon involved.
Man's respect for knowledge is one of his most peculiar characteristics. Science came to be the name of the most respectable kind of knowledge. But what distinguishes knowledge from superstition, ideology or pseudoscience? The Catholic Church excommunicated Copernicans, the Communist Party persecuted Mendelians on the ground that their doctrines were pseudoscientific. The demarcation between science and pseudoscience is not merely a problem of armchair philosophy: it is of vital social and political relevance. Many philosophers have tried to solve the problem of demarcation in the following terms: a statement constitutes knowledge if many people believe it sufficiently strongly. But the history of thought shows us that many people were totally committed to absurd beliefs. If the strength of beliefs were a hallmark of knowledge, we should have to rank some tales about demons, angels, devils, and of heaven and hell as knowledge. Scientists, on the other hand, are very skeptical even of their best theories. Newton's is the most powerful theory science has yet produced, but Newton himself never believed that bodies attract each other at a distance. So no degree of commitment to beliefs makes them knowledge. Indeed, the hallmark of scientific behaviour is a certain skepticism even towards one's most cherished theories. Blind commitment to a theory is not an intellectual virtue: it is an intellectual crime. Thus a statement may be pseudoscientific even if it is eminently 'plausible' and everybody believes in it, and it may be scientifically valuable even if it is unbelievable and nobody believes in it. A theory may even be of supreme scientific value even if no one understands it, let alone believes it [5].
Scientific knowledge
Scientific knowledge has got its own levels [1]. From the school bench you probably heard many times that there could be something like empirical and theoretical, and, on the other hand, there is still a great feasibility you knew about such a difference being a student or a full-time specialist at any sphere of work. So, empirical and theoretical levels are two different floors of scientific knowledge that comprise their unique and general forms and methods. Let’s look at Fig. 1, where you can see a so-called scientific knowledge block. The author decided to show it up in 3D because it would be more picturesque and, in addition, shorter to be reviewed.
Well, if we take into consideration first empirical level, we see it has such unique methods as experiment and observation, and own forms such as protocol suggestions, data, phenomenological theories, laws.
And theoretical level has own methods including idealization, formalization, from the abstract to the concrete, and unique forms including theory and hypothesis.
But if we try to look at the highest flatness, we can notice general methods and general forms that can belong both to empirical and theoretical levels.
From this first step let’s make an attempt to describe all of them and give them definitions and interpretations.
Fig. 1. Scientific Knowledge Block
Observation
Observation is an active acquisition of information from a primary source. In living beings, observation employs the senses. In science, observation can also involve the recording data via the use of instruments. The term may also refer to any data collected during the scientific activity. Observations can be qualitative, that is, only the absence or presence of a property is noted, or quantitative if a numerical value is attached to the observed phenomenon by counting or measuring.
Observation in Science
The scientific method requires observations of nature to formulate and test hypotheses. It consists of these steps:
1. Asking a question about a natural phenomenon.
2. Making observations of the phenomenon.
3. Hypothesizing an explanation for the phenomenon.
4. Predicting a logical consequence of the hypothesis.
5. Testing the hypothesis by an experiment, an observational study, or a field study.
6. Creating a conclusion with data gathered in the experiment, or forming a revised/new hypothesis and repeating the process.
Observations usually play a role in the second and fifth steps of the scientific method. However, the need for reproducibility requires that observations by different observers can be comparable. Human sense impressions are subjective and qualitative making them is difficult to record or compare, shared by all observers, and counting how many of the standard units are comparable to the object. Measurement reduces an observation to a number which can be recorded, and two observations which result in the same number are equal within the resolution of the process.
Senses are limited, and are a subject to errors in perception such as optical illusion. Scientific instruments were developed to magnify human powers of observation, such as weighing scales, clocks, telescope, microscopes, thermometers, cameras,