Фабрика планет. Экзопланеты и поиски второй Земли. Элизабет Таскер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Элизабет Таскер
Издательство: Альпина Диджитал
Серия:
Жанр произведения: Физика
Год издания: 2017
isbn: 978-5-0013-9042-8
Скачать книгу
простота описываемого процесса кажется несколько подозрительной. Ведь если бы все происходило именно так, тогда вокруг каждой звезды при ее рождении появлялся бы ее собственный планетообразующий диск. Может ли процесс образования планет и правда быть настолько широко распространен во Вселенной?

      Проверить это нетрудно – например, можно поискать протопланетные диски вокруг существующих сейчас молодых звезд. Проблема в том, что эти диски не светятся. В отличие от звезды в центре, которая активно разогревается, превращаясь в колоссальный пылающий шар, окружающий ее пылевой диск не может сам излучать свет. Но при этом пыль должна поглощать исходящую от звезды энергию. Энергия света звезды должна нагревать пыль в протопланетном диске точно так же, как лучи летнего солнца раскаляют капот автомобиля. Нагревшись, пыль должна выделять тепло в виде низкоэнергетического излучения инфракрасного спектра.

      Человеческий глаз не чувствителен к инфракрасному излучению, но найти камеры, которые могут его регистрировать, не так уж и трудно. К сожалению, этот вид устройств, отлично подходящий для фиксации тепла, исходящего от ночного грабителя, невозможно просто направить в небо, чтобы обнаружить там протопланетный диск. Причина в том, что, хотя звезда нагревает диск, его температура все равно может опускаться намного ниже любого значения, которое можно встретить на Земле. Чтобы излучаемое самой камерой тепло не мешало работе, ее придется охладить до температуры ниже той, которая фиксируется в звездной колыбели. Кроме того, собственная атмосфера Земли очень хорошо поглощает инфракрасное излучение; в этом она легко даст фору упомянутому выше грабителю, убегающему с вашим новым телевизором. Поэтому лучшее место для размещения такого инструмента – космос.

      Даже несмотря на то, что поддерживать низкие температуры при работе с космическими телескопами проще, использовать их для охоты за инфракрасным излучением все равно можно только при наличии дополнительного охлаждения. Обычно нужная температура достигается с помощью жидкого гелия, который медленно испаряется, поглощая окружающее его тепло и поддерживая температуру телескопа на уровне –270 °C. Когда гелий полностью испаряется, телескоп слегка нагревается до умеренно мягких –244 °C.

      Как раз такими телескопами, чья задача заключается в поиске дисков вокруг молодых звезд, были телескопы «Инфракрасная космическая обсерватория» (Infrared Space Observatory) и космический телескоп «Спитцер» (Spitzer Space Telescope). Первый был запущен в 1995 г. Европейским космическим агентством и продолжал работать до 1998 г., пока не закончился гелиевый хладагент. «Спитцер» – одна из «Больших обсерваторий» NASA. В эту знаменитую группу спутников также входит космический телескоп «Хаббл». «Спитцер» был запущен в 2003 г., хладагент на нем был выработан в мае 2009-го, но телескоп продолжил работу в режиме ограниченной нагрузки при более высокой температуре. Результаты работы этих телескопов не оставляли сомнений: все звезды младше миллиона лет окружены пылевыми дисками.