In the information-poor world, where any table of numbers was a rarity, centuries went by before people began systematically to gather different printed tables in order to check one against another. When they did, they found unexpected flaws. For example, Taylor’s Logarithms, the standard quarto printed in London in 1792, contained (it eventually transpired) nineteen errors of either one or two digits. These were itemized in the Nautical Almanac, for, as the Admiralty knew well, every error was a potential shipwreck.
Unfortunately, one of the nineteen corrections proved erroneous, so the next year’s Nautical Almanac printed an “erratum of the errata.” This in turn introduced yet another error. “Confusion is worse confounded,” declared The Edinburgh Review. The next almanac would have to put forth an “Erratum of the Erratum of the Errata in Taylor’s Logarithms.”
Particular mistakes had their own private histories. When Ireland established its Ordnance Survey, to map the entire country on a finer scale than any nation had ever accomplished, the first order of business was to ensure that the surveyors—teams of sappers and miners—had 250 sets of logarithmic tables, relatively portable and accurate to seven places. The survey office compared thirteen tables published in London over the preceding two hundred years, as well as tables from Paris, Avignon, Berlin, Leipzig, Gouda, Florence, and China. Six errors were discovered in almost every volume—and they were the same six errors. The conclusion was inescapable: these tables had been copied, one from another, at least in part.
Errors arose from mistakes in carrying. Errors arose from the inversion of digits, sometimes by the computers themselves and sometimes by the printer. Printers were liable to transpose digits in successive lines of type. What a mysterious, fallible thing the human mind seemed to be! All these errors, one commentator mused, “would afford a curious subject of metaphysical speculation respecting the operation of the faculty of memory.” Human computers had no future, he saw: “It is only by the mechanical fabrication of tables that such errors can be rendered impossible.”
Babbage proceeded by exposing mechanical principles within the numbers. He saw that some of the structure could be revealed by computing differences between one sequence and another. The “calculus of finite differences” had been explored by mathematicians (especially the French) for a hundred years. Its power was to reduce high-level calculations to simple addition, ready to be routinized. For Babbage the method was so crucial that he named his machine from its first conception the Difference Engine.
By way of example (for he felt the need to publicize and explain his conception many times as the years passed) Babbage offered the Table of Triangular Numbers. Like many of the sequences of concern, this was a ladder, starting on the ground and rising ever higher:
1, 3, 6, 10, 15, 21 . . .
He illustrated the idea by imagining a child placing groups of marbles on the sand:
Suppose the child wants to know “how many marbles the thirtieth or any other distant group might contain.” (It is a child after Babbage’s own heart.) “Perhaps he might go to papa to obtain this information; but I much fear papa would snub him, and would tell him that it was nonsense—that it was useless—that nobody knew the number, and so forth.” Understandably papa knows nothing of the Table of Triangular Numbers published at the Hague by É. de Joncourt, professor of philosophy. “If papa fail to inform him, let him go to mamma, who will not fail to find means to satisfy her darling’s curiosity.” Meanwhile, Babbage answers the question by means of a table of differences. The first column contains the number sequence in question. The next columns are derived by repeated subtractions, until a constant is reached—a column made up entirely of a single number.
Any polynomial function can be reduced by the method of differences, and all well-behaved functions, including logarithms, can be effectively approximated. Equations of higher degree require higher-order differences. Babbage offered another concrete geometrical example that requires a table of third differences: piles of cannonballs in the form of a triangular pyramid—the triangular numbers translated to three dimensions.
The Difference Engine would run this process in reverse: instead of repeated subtraction to find the differences, it would generate sequences of numbers by a cascade of additions. To accomplish this, Babbage conceived a system of figure wheels, marked with the numerals 0 to 9, placed along an axis to represent the decimal digits of a number: the units, the tens, the hundreds, and so on. The wheels would have gears. The gears along each axis would mesh with the gears of the next, to add the successive digits. As the machinery transmitted motion, wheel to wheel, it would be transmitting information, in tiny increments, the numbers summing across the axes. A mechanical complication arose, of course, when any sum passed 9. Then a unit had to be carried to the next decimal place. To manage this, Babbage placed a projecting tooth on each wheel, between the 9 and 0. The tooth would push a lever, which would in turn transmit its motion to the next wheel above.
At this point in the history of computing machinery, a new theme appears: the obsession with time. It occurred to Babbage that his machine had to compute faster than the human mind and as fast as possible. He had an idea for parallel processing: number wheels arrayed along an axis could add a row of the digits all at once. “If this could be accomplished,” he noted, “it would render additions and subtractions with numbers having ten, twenty, fifty, or any number of figures, as rapid as those operations are with single figures.” He could see a problem, however. The digits of a single addition could not be managed with complete independence because of the carrying. The carries could overflow and cascade through a whole set of wheels. If the carries were known in advance, then the additions could proceed in parallel. But that knowledge did not become available in timely fashion. “Unfortunately,” he wrote, “there are multitudes of cases in which the carriages that become due are only known in successive periods of time.” He counted up the time, assuming one second per operation: to add two fifty-digit numbers might take only nine seconds in itself, but the carrying, in the worst case, could require fifty seconds more. Bad news indeed. “Multitudes of contrivances were designed, and almost endless drawings made, for the purpose of economizing the time,” Babbage wrote ruefully. By 1820 he had settled on a design. He acquired his own lathe, used it himself and hired metalworkers, and in 1822 managed to present the Royal Society with a small working model, gleaming and futuristic.
BABBAGE’S WHEEL-WORK
He was living in London near the Regent’s Park as a sort of gentleman philosopher, publishing mathematical papers and occasionally lecturing to the public on astronomy. He married a wealthy young woman from Shropshire, Georgiana Whitmore, the youngest of eight sisters. Beyond what money she had, he was supported mainly by a £300 allowance from his father—whom he resented as a tyrannical, ungenerous, and above all close-minded old man. “It is scarcely too much to assert that he believes nothing he hears, and only half of what he sees,” Babbage wrote his friend Herschel. When his father died, in 1827, Babbage inherited a fortune of £100,000. He briefly became an actuary for a new Protector Life Assurance Company and computed statistical tables rationalizing life expectancies. He tried to get a university professorship, so far unsuccessfully, but he had an increasingly lively social life, and in scholarly circles people were beginning to know his name. With Herschel’s help he was elected a fellow of the Royal Society.
Even his misfires kindled his reputation. On behalf of The Edinburgh Journal of Science Sir David Brewster sent him a classic in the annals of rejection letters: “It is with no inconsiderable degree of reluctance that I decline the offer of any Paper from you. I think, however, you will upon reconsideration of the