С помощью надстройки NeuroSolutions, выделив столбцы In1-In10, отформатируем их как входы.
А столбец Out как выход нейросети.
Аналогичным образом разобьем нашу матрицу построчно на обучающее множество.
И множество, которое мы будем использовать для анализа.
Теперь мы сформируем файлы для программы NeuroSolutions.
Откроем NeuroSolutions и нажмем кнопку NeuralBuilder.
Выберем модель нейросети Multilayer Perceptron.
Нажмем кнопку Browse…
И откроем файл с обучающими входами.
Далее откроем файл с обучающим выходом.
Определим 30% данных из тренировочного множества для перекрестной проверки в процессе обучения нейросети.
Жмем кнопку Next до тех пор, пока не сформируется нейросеть.
С помощью кнопки Start и запустим процесс обучения.
После завершения процесса обучения нажмем кнопку Testing.
В выпадающем списке выберем Production.
Выберем файл с данными для анализа.
Создадим текстовой файл Prod.
И экспортируем в него данные с результатами, полученными от нейросети.
Откроем файл Prod и скопируем из него отклики нейросети.
Вставим эти отклики рядом с реальными дневными закрытиями, которые мы хотели бы получить в результате работы нейросети.
Поместим эти данные на график.
Результат вроде бы нас должен устроить. Кажется, что полученный результат хорошо накладывается на график цен закрытия. Однако, увеличив масштаб, мы обнаружим, что —
график отклика нейросети, хоть и повторяет график цен, но на один шаг от него отстает. Причем это не зависит – прогнозируем ли мы ценовые данные или производные от них. Исходя из этого, мы можем вывести какой-то постулат. Например – «То, что для нас – вчера, для нейросети – сегодня». Согласитесь, что здесь, в принципе, ни о каком прогнозе речи идти не может. Однако, забегая вперед,