А в реальности всё по-другому…
Ну, это всё был идеал. Равномерное движение – это то, чего хотят составители расписания автобусов, поездов метро и прочего транспорта. Которое, как мы видим, толком и не соблюдается (а даже если и соблюдается, то не секунда в секунду, а всё равно с отклонениями). Потому что движение там хоть и прямолинейное, но никак не равномерное. Трудно очень удержать одну и ту же скорость в наше нелёгкое время. Для этого физика предусмотрела более широкий вариант под названием «переменное движение».
При переменном движении тоже есть скорость, только она имеет немного другой характер. Это всё то же «перемещение поделить на время», но есть одно «но». Скорость-то, зараза такая, всё время меняется… если смотреть от того момента, как начал двигаться, до того, как закончил. То есть за большое время. А если посмотреть время поменьше – скорость будет меняться не так резко. Ну и, наконец, если совсем-совсем сузить обзор, то будет казаться, что скорость вообще постоянная (но за очень маленький промежуток времени). Вот за это и можно зацепиться!
Поэтому здесь получается так: очень маленькое перемещение делить на очень маленькое время. Они настолько маленькие, что первое стремится к точке, а второе – к мигу. То бишь, оба стремятся к нулю. В страшной математике (на которую, увы, физика опирается) такую дробь называют производной. Если совсем по-русски – то это скорость изменения по тому, по чему «производят». То есть получается, что наша многострадальная скорость – это скорость, с которой перемещение меняется во времени. Или, совсем по-простому, – как с течением времени меняется то самое разное расстояние, которое мы проезжаем на нашей машине.
И всё бы хорошо, да не помогает это избавиться от основной головной боли: скорость-то эта всё равно меняется всё время! И считать её получается совсем невыгодно: чтобы точно знать, как что движется, придётся считать эту скорость чёрт-те сколько раз. (Сколько? Ну, попробуйте посчитать, сколько бесконечно маленьких промежутков времени, например, в одной секунде.) Поэтому придумали ещё одну фишку.
Называется она ускорением. Это как бы вторая производная – оно показывает, как меняется скорость. Если смотреть так же: при очень маленьком времени это будет изменение нашей «типа постоянной» скорости (тоже может быть близким к нулю, хотя по факту точно не ноль) делить на наше очень маленькое время. То есть получается, что ускорение – скорость изменения скорости. Тоже получается всё тот же несчастный вектор (из-за того, что скорость векторная, а время – число, на которое вектору по барабану, умножат его или разделят). А в чём мерят ускорение, можно даже догадаться. Если скорость (метр в секунду) разделить на время (секунду), получится метр на секунду в квадрате. Звучит странно, но именно в таких единицах и мерят.