Вычислительное мышление: Метод решения сложных задач. Пол Керзон. Читать онлайн. Newlib. NEWLIB.NET

Автор: Пол Керзон
Издательство: Альпина Диджитал
Серия:
Жанр произведения: Самосовершенствование
Год издания: 2017
isbn: 978-5-9614-5020-0
Скачать книгу
У алгоритма оценивают много разных аспектов, но надежность и эффективность – два важнейших для оценки.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

iVBORw0KGgoAAAANSUhEUgAAAgYAAANSCAYAAAAeVwb1AAAKQ2lDQ1BJQ0MgcHJvZmlsZQAAeNqdU3dYk/cWPt/3ZQ9WQtjwsZdsgQAiI6wIyBBZohCSAGGEEBJAxYWIClYUFRGcSFXEgtUKSJ2I4qAouGdBiohai1VcOO4f3Ke1fXrv7e371/u855zn/M55zw+AERImkeaiagA5UoU8Otgfj09IxMm9gAIVSOAEIBDmy8JnBcUAAPADeXh+dLA//AGvbwACAHDVLiQSx+H/g7pQJlcAIJEA4CIS5wsBkFIAyC5UyBQAyBgAsFOzZAoAlAAAbHl8QiIAqg0A7PRJPgUA2KmT3BcA2KIcqQgAjQEAmShHJAJAuwBgVYFSLALAwgCgrEAiLgTArgGAWbYyRwKAvQUAdo5YkA9AYACAmUIszAAgOAIAQx4TzQMgTAOgMNK/4KlfcIW4SAEAwMuVzZdL0jMUuJXQGnfy8ODiIeLCbLFCYRcpEGYJ5CKcl5sjE0jnA0zODAAAGvnRwf44P5Dn5uTh5mbnbO/0xaL+a/BvIj4h8d/+vIwCBAAQTs/v2l/l5dYDcMcBsHW/a6lbANpWAGjf+V0z2wmgWgrQevmLeTj8QB6eoVDIPB0cCgsL7SViob0w44s+/zPhb+CLfvb8QB7+23rwAHGaQJmtwKOD/XFhbnauUo7nywRCMW735yP+x4V//Y4p0eI0sVwsFYrxWIm4UCJNx3m5UpFEIcmV4hLpfzLxH5b9CZN3DQCshk/ATrYHtctswH7uAQKLDljSdgBAfvMtjBoLkQAQZzQyefcAAJO/+Y9AKwEAzZek4wAAvOgYXKiUF0zGCAAARKCBKrBBBwzBFKzADpzBHbzAFwJhBkRADCTAPBBCBuSAHAqhGJZBGVTAOtgEtbADGqARmuEQtMExOA3n4BJcgetwFwZgGJ7CGLyGCQRByAgTYSE6iBFijtgizggXmY4EImFINJKApCDpiBRRIsXIcqQCqUJqkV1II/ItchQ5jVxA+pDbyCAyivyKvEcxlIGyUQPUAnVAuagfGorGoHPRdDQPXYCWomvRGrQePYC2oqfRS+h1dAB9io5jgNExDmaM2WFcjIdFYIlYGibHFmPlWDVWjzVjHVg3dhUbwJ5h7wgkAouAE+wIXoQQwmyCkJBHWExYQ6gl7CO0EroIVwmDhDHCJyKTqE+0JXoS+cR4YjqxkFhGrCbuIR4hniVeJw4TX5NIJA7JkuROCiElkDJJC0lrSNtILaRTpD7SEGmcTCbrkG3J3uQIsoCsIJeRt5APkE+S+8nD5LcUOsWI4kwJoiRSpJQSSjVlP+UEpZ8yQpmgqlHNqZ7UCKqIOp9aSW2gdlAvU4epEzR1miXNmxZDy6Qto9XQmmlnafdoL+l0ugndgx5Fl9CX0mvoB+nn6YP0dwwNhg2Dx0hiKBlrGXsZpxi3GS+ZTKYF05eZyFQw1zIbmWeYD5hvVVgq9ip8FZHKEpU6lVaVfpXnqlRVc1U/1XmqC1SrVQ+rXlZ9pkZVs1DjqQnUFqvVqR1Vu6k2rs5Sd1KPUM9RX6O+X/2C+mMNsoaFRqCGSKNUY7fGGY0hFsYyZfFYQtZyVgPrLGuYTWJbsvnsTHYF+xt2L3tMU0NzqmasZpFmneZxzQEOxrHg8DnZnErOIc4NznstAy0/LbHWaq1mrX6tN9p62r7aYu1y7Rbt69rvdXCdQJ0snfU6bTr3dQm6NrpRuoW623XP6j7TY+t56Qn1yvUO6d3RR/Vt9KP1F+rv1u/RHzcwNAg2kBlsMThj8MyQY+hrmGm40fCE4agRy2i6kcRoo9FJoye4Ju6HZ+M1eBc+ZqxvHGKsNN5l3Gs8YWJpMtukxKTF5L4pzZRrmma60bTTdMzMyCzcrNisyeyOOdWca55hvtm82/yNhaVFnMVKizaLx5balnzLBZZNlvesmFY+VnlW9VbXrEnWXOss623WV2xQG1ebDJs6m8u2qK2brcR2m23fFOIUjynSKfVTbtox7PzsCuya7AbtOfZh9iX2bfbPHcwcEh3WO3Q7fHJ0dcx2bHC866ThNMOpxKnD6VdnG2ehc53zNRemS5DLEpd2lxdTbaeKp26fesuV5RruutK10/Wjm7ub3K3ZbdTdzD3Ffav7TS6bG8ldwz3vQfTw91jicczjnaebp8LzkOcvXnZeWV77vR5Ps5wmntYwbcjbxFvgvct7YDo+PWX6zukDPsY+Ap96n4e+pr4i3z2+I37Wfpl+B/ye+zv6y/2P+L/hefIW8U4FYAHBAeUBvYEagbMDawMfBJkEpQc1BY0FuwYvDD4VQgwJDVkfcpNvwBfyG/ljM9xnLJrRFcoInRVaG/owzCZMHtYRjobPCN8Qfm+m+UzpzLYIiOBHbIi4H2kZmRf5fRQpKjKqLupRtFN0cXT3LNas5Fn7Z72O8Y+pjLk722q2cnZnrGpsUmxj7Ju4gLiquIF4h/hF8ZcSdBMkCe2J5MTYxD2J43MC52yaM5zkmlSWdGOu5dyiuRfm6c7Lnnc8WTVZkHw4hZgSl7I/5YMgQlAvGE/lp25NHRPyhJuFT0W+oo2iUbG3uEo8kuadVpX2ON07fUP6aIZPRnXGMwlPUit5kRmSuSPzTVZE1t6sz9lx2S05lJyUnKNSDWmWtCvXMLcot09mKyuTDeR55m3KG5OHyvfkI/lz89sVbIVM0aO0Uq5QDhZML6greFsYW3i4SL1IWtQz32b+6vkjC4IWfL2QsFC4sLPYuHhZ8eAiv0W7FiOLUxd3LjFdUrpkeGnw0n3LaMuylv1Q4lhSVfJqedzyjlKD0qWlQyuCVzSVqZTJy26u9Fq5YxVhlWRV72qX1VtWfyoXlV+scKyorviwRrjm4ldOX9V89Xlt2treSrfK7etI66Trbqz3Wb+vSr1qQdXQhvANrRvxjeUbX21K3nShemr1js20zcrNAzVhNe1bzLas2/KhNqP2ep1/XctW/a2rt77ZJtrWv913e/MOgx0VO97vlOy8tSt4V2u9RX31btLugt2PGmIbur/mft24R3dPxZ6Pe6V7B/ZF7+tqdG9s3K+/v7IJbVI2jR5IOnDlm4Bv2pvtmne1cFoqDsJB5cEn36Z8e+NQ6KHOw9zDzd+Zf7f1COtIeSvSOr91rC2jbaA9ob3v6IyjnR1eHUe+t/9+7zHjY3XHNY9XnqCdKD3x+eSCk+OnZKeenU4/PdSZ3Hn3TPyZa11RXb1nQ8+ePxd07ky3X/fJ897nj13wvHD0Ivdi2yW3S609rj1HfnD94UivW2/rZffL7Vc8rnT0Tes70e/Tf/pqwNVz1/jXLl2feb3vxuwbt24m3Ry4Jbr1+Hb27Rd3Cu5M3F16j3iv/L7a/eoH+g/qf7T+sWXAbeD4YMBgz8NZD+8OCYee/pT/04fh0kfMR9UjRiONj50fHxsNGr3yZM6T4aeypxPPyn5W/3nrc6vn3/3i+0vPWPzY8Av5i8+/rnmp83Lvq6mvOscjxx+8znk98ab8rc7bfe+477rfx70fmSj8QP5Q89H6Y8en0E/3Pud8/vwv94Tz+4A5JREAAAAZdEVYdFNvZnR3YXJlAEFkb2JlIEltYWdlUmVhZHlxyWU8AAAECmlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS41LWMwMTQgNzkuMTUxNDgxLCAyMDEzLzAzLzEzLTEyOjA5OjE1ICAgICAgICAiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1sbnM6ZGM9Imh0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvIiB4bXBNTTpEb2N1bWVudElEPSJ4bXAuZGlkOjM5NjYxM0U2QzhBRjExRTc4NTAzOEI1OEIxNUI2NDBFIiB4bXBNTTpJbnN0YW5jZUlEPSJ4bXAuaWlkOjM5NjYxM0U1QzhBRjExRTc4NTAzOEI1OEIxNUI2NDBFIiB4bXA6Q3JlYXRvclRvb2w9IkFkb2JlIEluRGVzaWduIENTNiAoV2luZG93cykiPiA8eG1wTU06RGVyaXZlZEZyb20gc3RSZWY6aW5zdGFuY2VJRD0idXVpZDpjNWI3NDdjZi02NzI5LTQ2ZDktODgzNy0zNzdkYmYyYTM3N2QiIHN0UmVmOmRvY3VtZW50SUQ9InV1aWQ6NjE1MDA5OWMtNzA1OC00NTVlLTgzYjMtMThkMTRhYjkyYzQzIi8+IDxkYzpjcmVhdG9yPiA8cmRmOlNlcT4gPHJkZjpsaT5hLmFicmFtb3Y8L3JkZjpsaT4gPC9yZGY6U2VxPiA8L2RjOmNyZWF0b3I+IDxkYzp0aXRsZT4gPHJkZjpBbHQ+IDxyZGY6bGkgeG1sOmxhbmc9IngtZGVmYXVsdCI+VnljaGlzbGl0ZWxub2UgbXlzaGxlbmllLmluZGQ8L3JkZjpsaT4gPC9yZGY6QWx0PiA8L2RjOnRpdGxlPiA8L3JkZjpEZXNjcmlwdGlvbj4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gPD94cGFja2V0IGVuZD0iciI/PsvnDCUAAInKSURBVHja7J0HmBRF+sZrM0tORhARRRQxizlgxpwjnmLO6cynp3jqGU7/Kuacs2c8PROKiAHFhAqCIiCICEpcdmGX3f3Xa799U9v0zPSE3Z2dfX/P8z07O9Oxuru+t776qrqgvr7eCCGEEEKAQhWBEEIIISQMhBBCCCFhIIQQQggJAyGEEEJIGAghhBBCwkAIIYQQEgZCCCGEkDAQQgghhISBEEIIISQMhBBCCCFhIIQQQggJAyGEEEJIGAghhBCiOShuyQdfV1dnampqdBWFiAn9MmtL8XioOIRI4PyKi01RUZEKIt+Ewbhx48z9999vysvLdSVbNkOs7WxtvrVl/K7EWqm1ZO8FhwNcws8F1tpbW2ztKmsLWlg5rGrtQmuoraqc78t5Xm9bezLOultb+4e1Dax9au0UazN0awmxPIsXLzYHH3yw2WmnnVQY+SYMEC2YN2+eWbJkia5ky2Z1aztaW9laG//ZtTbLJO7uqmcLuYfz/6/WJlBYtDRw7ttb622ti/P9dIqciXHW29Taq9a68v+9rJ1u7RLdWkIsT0VFhfxGvgqDgoKCP0NBCge1eP5JO9raI/zuPmvnsvUcj1prG1v7gv+/Y223FlwOP1nbxFpba59Z60+BtGsCUYDyGW6tg7WrrR1jbTXoZt1WQoRTUlJiCguVYhcPlYzIJeY6n+sc5x/P3OWMaXldB/GopCAA6FqpSrDsgcbrRoCg+jsjDtdYu1O3kxCi1UUMRF5T0ETrtOSywPfn8vPD/DvV2mW6fYQQEgZCpH7vI/xewtb54hZ4DjtY28raCGsfprguuiuQ0Iguh4UmFoFJR7QgH2IZtxNl+TbcP64BRlBUmFjSaVRKef0KuX6VbmkhJAyESIe1jJexv4e1NYyX8f+7tS+Nl9fwYgIntabxciF8Z1TP9QtocHLV/AzH187atdY+bqRzOYl/b4u4PPIRDrB2srX1ra1Eh/odIw4PmNgID5dO1rawtre1edauoBj4i7X9jZcXgfIYa7x8h3dDttHTeCMukBPSx1p3OnesN8XaSGu3W5uU5Bw25/HvyG2iDkPC6UfG6z55L2QdJLdex/Nf5AiUbtbG8Jr61/cmHpNfDiVc7j3+JoSEgRB5xGnW/kWn/YG1eygK4GyQtLcrW9/HWfs5ZH04i9+s9TJeoiSEwQSKgXo6oO5c9mvjJRA2ViRigLUj6Nj+E2H5Faw9ZLwRC+Pp5GZa29La8XTKOP8jjZfjADpae9DaYIoc/7wwWuRS4w2vXMzIA8QDRofsZ22YtStDjvdMOuaX6MgXU3AM4W84n91NLJk0KGrg3M/j/y/zf1yTXawdbu1gCpyzHAEA6niNMHpjPef7sYFIwzJGTgaZ2EiXSpaxUtiFhIEQeQac3x38jDkOLnd+e5KtzdeMN5/CC8Yb3TA3sI1f6HQMBQSc3bYmlvR4g7ULKBIOM/FHEqRK2FwO1/Dv1SZ5NwBC909bw6Dtp6wNpaMETzBK8jqdOoY4/t1pVUP4/EAhtCojDYgUnG/tfTrONejYj+N6w7hO2JwL1zktdPAYnfwbFFUX0smHrXc+Px/N9XweNV7y5Ys8t3bchp+YOp3CD9v/ik7/fQoAl2nWDmI5jeB3NzJCIkSrQaMSRGsAIedr+XlUnIoeIeyz+XlTtoiTsdhpXQcdebaGC8I5l7PFXMaoxOPW9jXehEZRogWn0dkh5H6OIwp83qVTBSdYW5GfF1AkXEJRZOjwd6PQ+JXLfEXhda2zzUsZmXHPw8QRSyMYXfHLPphsub0TKbgnIArcbfhRikOsHRsn4rPU+RyPisA1FkLCQIg8Ay3ZFfj5QRN/NsX/WvuEn4+lE4733KzKiEJNiPPLJkiwQ44CujBmUMAMYaTgiojrn+pEB2bHWc7Pg8AkU+sl2B6EULxEP0Rivubn/nToPsjhONSE5wDUOducHXJ9TnfK9qEEx/YYy8kwglEWIrKiXCPVi0LCQIg8Zw+nJZgoEbDecVxdAo7NBQ5nFbaYGxu07h+2drPxukLe5HcIqyMEv0aS9ZE/sRY/T2c0YM2ArWAazrS4VpIIRjznWsVj8tnY+Yy8hOfM8t0zADkbA/g52P2AY9uBn7+39m2CY5vtCLsNjTc9dDrU65ERrRnlGIh8Z0XHec42yd8fMM75vJkJD1sjmx+JeT81wfFXURRMd75Dgt6zxutOQMscSYNT46y/kfP5Fmu3RthnxwyO9zPn85oJohhFjBRghAJyMzCd8z9MLA/Ep4+JdW0gByBZaB8jLPZzzv2zBHUfjqF9SHl30GMjJAyEyF86OY6l0oTnBLjMcT7Ha42vxlbzpCY4fuwnGNlD1OCv1u5n6x4jLQ6Js/4aTuQB+QWTjTdMMKyVXM864ZsMjvd353O8t5vh2K/gtWjH/d5r7e6QZVdwIhQLUtz/6gmW24HRi7Doh+ZYFxIGQuQ5BVlebx3+/b4ZzwlZ+BjPP9B4w/SQEPhWAieHc8FbFz9v5ONyX171R4KowjV0zMjV8OdWQO7EZYGoRmPNZgmBhJEowTyEGkY6ztBjIyQMhMhPFjEKsAJbpwgdVyRYfgXn85Q4y+DdBMhuH9+M54Ux949RGIDT4wiDXx2H3acJhME6zucf4izzOs0Hoxne4LncRAHzcUgEoEuE/XdzPv+cYLmpxpuMKYxNJQxEa0bJhyLfmcXWIUCXQs8ky2/ifB4b8jtamJh17yvTNMmHiXjJxJL59qRDCzLB+bxHExzT9k7L+8NAyz9e6x/ncLsT4dgn0LL3Rxr0NsvnBARxcyq+ykLUQwgJAyHyEL912o5OPR6YCGgwP2Pq3/dDlsFMfei7fiEHzgsJia/wM6J/J4Ys87EjHjB98ZqNeDzrOk4dr8D2ZzAsp4i5PMG6bnRmZeczEkZH8nNf4yWExgP5FNvw89cmNnRSCCFhIPKAbA4Ze8TExu+fYJbvV/bBfAfr8/PDxsuCxyQ9e5nYZD2YLKg2jjCoa4aycIf3IQGxV+B3jMJ4np8Rir8hyXOPUQ5b