Проследим также за тем, как меняется в течение года сравнительная долгота дня и ночи. Начиная с осеннего равноденствия, т. е. с 23 сентября, светлая часть суток в северном полушарии становится короче темной. Так продолжается целое полугодие, в течение которого дни сначала укорачиваются – до 22 декабря, а затем удлиняются, пока 21 марта день не сравняется с ночью. С этого момента в течение всего остального полугодия день в северном полушарии длиннее ночи. Дни удлиняются до 22 июня, после чего убывают, оставаясь первые три месяца длиннее ночи; они опять сравняются с ночью лишь в момент осеннего равноденствия (23 сентября).
Указанные четыре даты и определяют собой начало и конец астрономических времен года. А именно, для всех мест северного полушария:
21 марта – день, равный ночи, – начало весны,
22 июня – самый долгий день – начало лета,
23 сентября – день, равный ночи, – начало осени,
22 декабря – самый короткий день – начало зимы.
По другую сторону экватора, в южном полушарии Земли, с нашей весной совпадает осень, с нашим летом – зима и т. п.
Предложим читателю в заключение несколько вопросов, размышление над которыми поможет ему лучше уяснить и запомнить сказанное:
1. Где на земном шаре день равен ночи круглый год?
2. В котором часу (по местному времени) взойдет в Ташкенте Солнце 21 марта нынешнего года? В котором часу взойдет оно в тот же день в Токио? В Буэнос-Айресе?
3. В котором часу (по местному времени) закатится Солнце в Новосибирске 23 сентября нынешнего года? А в Нью-Йорке? На мысе Доброй Надежды?
4. В котором часу восходит Солнце в пунктах экватора 2 августа? 27 февраля?
5. Случаются ли июльские морозы и январские знойные дни[5]?
Три «если бы»
Слишком привычное уясняется нередко с бо́льшим трудом, чем необычное. Особенности десятичной системы счисления, которой мы овладеваем с детства, обнаруживаются для нас только тогда, когда мы пробуем изображать числа в иной, например, в семеричной или двенадцатеричной системе. Сущность евклидовой геометрии постигается нами тогда, когда мы начинаем знакомиться с геометрией неевклидовой. Чтобы хорошо понять, какую роль в нашей жизни играет сила тяжести, надо вообразить, что она во много раз больше или меньше, чем в действительности. Мы так и поступим, когда будем говорить о тяжести. А сейчас воспользуемся способом «если бы», чтобы лучше уяснить себе условия движения Земли вокруг Солнца.
Начнем с затверженного в школе положения, что земная ось составляет с плоскостью орбиты Земли угол в 661/2° (около 3/4 прямого угла). Вы хорошо поймете значение этого факта лишь тогда, когда вообразите,