Insectivorous Plants. Darwin Charles. Читать онлайн. Newlib. NEWLIB.NET

Автор: Darwin Charles
Издательство: Public Domain
Серия:
Жанр произведения: Зарубежная классика
Год издания: 0
isbn:
Скачать книгу
was then treated with a drop of milk, and this caused the tentacles to bend inwards in 12 hrs.

      Cold Filtered Infusion of Raw Meat. – This was tried only on a single leaf, which had most of its outer tentacles and the blade inflected in 19 hrs. During subsequent years, I repeatedly used this infusion to test leaves which had been experimented on with other substances, and it was found to act most energetically, but as no exact account of these trials was kept, they are not here introduced.

      Mucus. – Thick and thin mucus from the bronchial tubes, placed on three leaves, caused inflection. A leaf with thin mucus had its marginal tentacles and blade somewhat curved inward in 5 hrs. 30 m., and greatly so in 20 hrs. The action of this fluid no doubt is due either to the saliva or to some albuminous matter15 mingled with it, and not, as we shall see in the next chapter, to mucin or the chemical principle of mucus.

      Saliva. – Human saliva, when evaporated, yields from 1.14 to 1.19 per cent. of residue; and this yields 0.25 per cent. of ashes, so that the proportion of nitrogenous matter which saliva contains must be small. Nevertheless, drops placed on the discs of eight leaves acted on them all. In one case all the exterior tentacles, excepting nine, were inflected in 19 hrs. 30 m.; in another case a few became so in 2 hrs., and after 7 hrs. 30 m. all those situated near where the drop lay, as well as the blade, were acted on. Since making these trials, I have many scores of times just touched glands with the handle of my scalpel wetted with saliva, to ascertain whether a leaf was in an active condition; for this was shown in the course of a few minutes by the bending inwards of the tentacles. The edible nest of the Chinese swallow is formed of matter secreted by the salivary glands; two grains were added to one ounce of distilled water (one part to 218), which was boiled for several minutes, but did not dissolve the whole. The usual-sized drops were placed on three leaves, and these in 1 hr. 30 m. were well, and in 2 hrs. 15 m. closely, inflected.

      Isinglass. – Drops of a solution about as thick as milk, and of a still thicker solution, were placed on eight leaves, and the tentacles of all became inflected. In one case the exterior tentacles were well curved in after 6 hrs. 30 m., and the blade of the leaf to a partial extent after 24 hrs. As saliva acted so efficiently, and yet contains so small a proportion of nitrogenous matter, I tried how small a quantity of isinglass would act. One part was dissolved in 218 parts of distilled water, and drops were placed on four leaves. After 5 hrs. two of these were considerably and two moderately inflected; after 22 hrs. the former were greatly and the latter much more inflected. In the course of 48 hrs. from the time when the drops were placed on the leaves, all four had almost re-expanded. They were then given little bits of meat, and these acted more powerfully than the solution. One part of isinglass was next dissolved in 437 of water; the fluid thus formed was so thin that it could not be distinguished from pure water. The usual-sized drops were placed on seven leaves, each of which thus received 1/960 of a grain (.0295 mg.). Three of them were observed for 41 hrs., but were in no way affected; the fourth and fifth had two or three of their exterior tentacles inflected after 18 hrs.; the sixth had a few more; and the seventh had in addition the edge of the leaf just perceptibly curved inwards. The tentacles of the four latter leaves began to re-expand after an additional interval of only 8 hrs. Hence the 1/960 of a grain of isinglass is sufficient to affect very slightly the more sensitive or active leaves. On one of the leaves, which had not been acted on by the weak solution, and on another, which had only two of its tentacles inflected, drops of the solution as thick as milk were placed; and next morning, after an interval of 16 hrs., both were found with all their tentacles strongly inflected.]

      Altogether I experimented on sixty-four leaves with the above nitrogenous fluids, the five leaves tried only with the extremely weak solution of isinglass not being included, nor the numerous trials subsequently made, of which no exact account was kept. Of these sixty-four leaves, sixty-three had their tentacles and often their blades well inflected. The one which failed was probably too old and torpid. But to obtain so large a proportion of successful cases, care must be taken to select young and active leaves. Leaves in this condition were chosen with equal care for the sixty-one trials with non-nitrogenous fluids (water not included); and we have seen that not one of these was in the least affected. We may therefore safely conclude that in the sixty-four experiments with nitrogenous fluids the inflection of the exterior tentacles was due to the absorption of nitrogenous matter by the glands of the tentacles on the disc.

      Some of the leaves which were not affected by the non-nitrogenous fluids were, as above stated, immediately afterwards tested with bits of meat, and were thus proved to be in an active condition. But in addition to these trials, twenty-three of the leaves, with drops of gum, syrup, or starch, still lying on their discs, which had produced no effect in the course of between 24 hrs. and 48 hrs., were then tested with drops of milk, urine, or albumen. Of the twenty-three leaves thus treated, seventeen had their tentacles, and in some cases their blades, well inflected; but their powers were somewhat impaired, for the rate of movement was decidedly slower than when fresh leaves were treated with these same nitrogenous fluids. This impairment, as well as the insensibility of six of the leaves, may be attributed to injury from exosmose, caused by the density of the fluids placed on their discs.

      [The results of a few other experiments with nitrogenous fluids may be here conveniently given. Decoctions of some vegetables, known to be rich in nitrogen, were made, and these acted like animal fluids. Thus, a few green peas were boiled for some time in distilled water, and the moderately thick decoction thus made was allowed to settle. Drops of the superincumbent fluid were placed on four leaves, and when these were looked at after 16 hrs., the tentacles and blades of all were found strongly inflected. I infer from a remark by Gerhardt16 that legumin is present in peas "in combination with an alkali, forming an incoagulable solution," and this would mingle with boiling water. I may mention, in relation to the above and following experiments, that according to Schiff certain forms of albumen exist which are not coagulated by boiling water, but are converted into soluble peptones.

      On three occasions chopped cabbage-leaves17 were boiled in distilled water for 1 hr. or for 1 1/4 hr.; and by decanting the decoction after it had been allowed to rest, a pale dirty green fluid was obtained. The usual-sized drops were placed on thirteen leaves. Their tentacles and blades were inflected after 4 hrs. to a quite extraordinary degree. Next day the protoplasm within the cells of the tentacles was found aggregated in the most strongly marked manner. I also touched the viscid secretion round the glands of several tentacles with minute drops of the decoction on the head of a small pin, and they became well inflected in a few minutes. The fluid proving so powerful, one part was diluted with three of water, and drops were placed on the discs of five leaves; and these next morning were so much acted on that their blades were completely doubled over. We thus see that a decoction of cabbage-leaves is nearly or quite as potent as an infusion of raw meat.

      About the same quantity of chopped cabbage-leaves and of distilled water, as in the last experiment, were kept in a vessel for 20 hrs. in a hot closet, but not heated to near the boiling-point. Drops of this infusion were placed on four leaves. One of these, after 23 hrs., was much inflected; a second slightly; a third had only the submarginal tentacles inflected; and the fourth was not at all affected. The power of this infusion is therefore very much less than that of the decoction; and it is clear that the immersion of cabbage-leaves for an hour in water at the boiling temperature is much more efficient in extracting matter which excites Drosera than immersion during many hours in warm water. Perhaps the contents of the cells are protected (as Schiff remarks with respect to legumin) by the walls being formed of cellulose, and that until these are ruptured by boiling-water, but little of the contained albuminous matter is dissolved. We know from the strong odour of cooked cabbage-leaves that boiling water produces some chemical change in them, and that they are thus rendered far more digestible and nutritious to man. It is therefore an interesting fact that water at this temperature extracts matter from them which excites Drosera to an extraordinary degree.

      Grasses contain far less nitrogenous matter than do peas or cabbages. The leaves and stalks of three common kinds were chopped and boiled for some time in distilled water. Drops of this decoction (after having stood for 24 hrs.) were placed on six leaves, and acted in a rather peculiar manner, of which other instances will be given in the seventh chapter on


<p>15</p>

Mucus from the air-passages is said in Marshall, 'Outlines of Physiology,' vol. ii. 1867, p. 364, to contain some albumen.

Mller's 'Elements of Physiology,' Eng. Trans. vol. i., p. 514.

<p>16</p>

Watts' 'Dictionary of Chemistry,' vol. iii., p. 568.

'Leons sur la Phys. de la Digestion,' tom. i, p. 379; tom. ii. pp. 154, 166, on legumin.

<p>17</p>

The leaves of young plants, before the heart is formed, such as were used by me, contain 2.1 per cent. of albuminous matter, and the outer leaves of mature plants 1.6 per cent. Watts' 'Dictionary of Chemistry,' vol. i. p. 653.