It is unnecessary to speak of what has been done during the last few years at our old Universities and great public schools, in the erection of laboratories, and in other ways for the promotion of science, because it has been for the purposes of instruction, and not of original research. No amount of ordinary instruction in science will remedy the evils caused by want of original inquiry, because such instruction does not produce new knowledge, but only disseminates that already possessed.
Many persons in this country think that all scientific men are investigators, and that a portion of the funds of scientific institutions generally are expended upon investigation, but such is rarely the case. Many also consider that those scientific men who are applying new knowledge are discovering new truths. And nearly all persons look upon inventors as the only really practical scientific men, and upon discoverers as unpractical enthusiasts who spend their lives in pursuit of vague theories. But whilst the inventor is a great and useful agent of civilization, there is one behind him who is greater than he, viz., the man who provides him with the new knowledge upon which all his inventions must be based.
The general aspect in which scientific research is viewed by many persons in this country, is that of a refined intellectual pursuit, which may be encouraged and honoured for the purpose of maintaining the tone of society. The question, however, is not whether this nation shall encourage research as a refined intellectual occupation, but whether it will contribute towards its own welfare by aiding scientific discovery.
Many persons also look upon scientific research as a hobby or as unpractical, and upon discoverers as mere accumulators of knowledge, but this is simply in consequence of their ignorance of the subject; if discoveries were commercial commodities, the practical character of research would be within their comprehension. A man who discovers knowledge for the use of invention is quite as practical a person as he who converts that knowledge into inventions fit for practical uses. The men who thus lead practical men must be practical themselves. Scientific discoverers may be considered the most practical men in existence, because their labours give rise to greater and more numerous practical results than those of any other persons. The discovery of a single substance, such as oil-of-vitriol, or washing-soda, has led to the formation of many valuable inventions, patented or otherwise, and to the establishment of thousands of manufactories. It is well known also that scientific discoverers are ardent lovers of truth, and are therefore very willing to communicate their knowledge for the good of mankind, and that manufacturers, men of business, and others, not unfrequently obtain from them and from their published researches, information of great value to themselves without even expecting to pay for it; forgetting that a scientific man may communicate in a passing remark, information which cost him years of labour to obtain.
Some persons also think that science is changeable and uncertain – that the discoveries of one generation are disproved by those of another, because they occasionally see scientific theories altered and superseded. But the real truth of the case is that the changes in the aspect of science which we continually witness do not often result from alterations in our stock of positive knowledge, but from additions made to it. Demonstrable truth is imperishable. It is true that many theories have been invented and entertained for a while in the minds of scientific men, and have then passed away, but we must remember that these are only the scaffolding of science, and no part of its real fabric. They consist of ideas which, whilst they assist us in understanding science, and in making discoveries, form no real part of our positive knowledge.
Other persons seem to think that the laws of matter are different in the laboratory from what they are in the workshop; that the principles which regulate a scientific experiment are different from those which govern a large manufacturing process; but this is a wrong idea. The laws of matter are universal, substances have nearly the same properties in all places and in the hands of all men; water boils at the same temperature whether in the retort of a chemist, the saucepan of a kitchenmaid, or the pan of a soap-boiler; iron wire is as readily deprived of its rust in a chemist's acid bottle as in a wire-drawer's pickling tub; a piece of phosphorus will as readily ignite in the hands of a chemist as in those of a match maker; a galvanic battery yields the same quantity of electricity whether it be in the hands of an experimentalist or in those of a working electro-plater.
It is true that many things which have appeared very promising in theory or in experiment, have failed altogether in practice, but why is this? it is not that the principles of nature operated in the one case and did not operate in the other, but that we have imperfectly understood them, that from some unforeseen circumstances we have been unable to apply them; or that we have indolently abandoned them without sufficient or proper trial. In many cases we are unable to obtain the same conditions of success upon the large scale that we have upon the small one. In other cases a process fails because of its too great expense; many attempts have been made to supersede steam as a motive power by means of electro-magnetism, and engines driven by that force have been constructed of five or ten horse-power, but the cost of driving them has been found to be at least ten times the amount of that of the steam-engine of equal strength. And in other cases we fail because we attempt at once to carry out upon a large scale that which has only been the subject of limited experiment, instead of enlarging the process by small degrees, and adapting the apparatus, the materials and the treatment, to the size of the operation.
That also which appears very simple in the hands of an experimentalist, almost invariably becomes much more complex when carried into practice in a manufactory, simply because there is then a greater number of conditions to be fulfilled. Electro-plating a piece of steel with silver is to a chemist a very simple matter, because it is of no importance to him whether the silver adheres firmly, is of good colour, or is deposited at a certain cost; but with a manufacturer unless all these conditions are fulfilled, the process is a failure. These matters, however, belong to invention and not to original discovery.
We should not condemn theoretical science because we are not able, even with fair and persevering trial, to apply it to any useful purpose, but wait patiently until circumstances ripen for its application. Many inventions which are inapplicable in one state of knowledge become applicable by the progress of scientific research. The idea of an electric telegraph, attempted by Mr. Ronalds, in the year 1816, with the aid of frictional electricity, had to wait the development of the galvanic battery and the discovery of electro-magnetism before it could be successfully applied.
Many manufacturers seem to think that because some of their operations are completely routine, and have been handed down to them by their predecessors in nearly their present state, they are not at all indebted to science; but there is no manufacture, especially among metals, which has not in some degree been aided by scientific discovery.
In addition to the great benefits accruing from original research to all classes of society, our Governments have also derived immense advantages from the same source. The revenues have been greatly increased by the universal advantages conferred upon all kinds of industry and commerce by scientific knowledge. The additional taxes upon increased incomes from agriculture, arts, manufactures,