Математика покера от профессионала. Дэвид Склански. Читать онлайн. Newlib. NEWLIB.NET

Автор: Дэвид Склански
Издательство: Эксмо
Серия: Спорт. Лучший мировой опыт
Жанр произведения: Руководства
Год издания: 1999
isbn: 978-5-699-82937-8
Скачать книгу
но немного более сложная ситуация. На последней улице в 7-карточный стад вы собрали флеш. Оппонент перед вами, которого вы кладете на две пары, ставит, и, кроме того, в раздаче присутствует игрок за вами, – вы уверены, что тоже бьете его. Если вы повысите, противник, сидящий после вас, сбросит. Более того, игрок, первоначально сделавший ставку, вероятно, также сбросит, если он действительно имеет две пары; но если он собрал фулл хаус, то он сделает ререйз. В данной ситуации у игры через рейз не положительное математическое ожидание, а отрицательное. В случае, когда первый игрок собрал фулл хаус и сделает ререйз, такая игра будет стоить вам две ставки, если вы сделаете колл его ререйза, и одну ставку, если сбросите.

      Пойдем в этом примере еще дальше. Если вы последней картой не соберете флеш и игрок перед вами сделает ставку, вы можете сделать рейз против определенных оппонентов! Следуя логике ситуации, когда вы не собрали флеш, соперник позади вас сбросит, и если игрок, первоначально сделавший ставку, имел только две пары, он тоже может сбросить. Имеет ли розыгрыш положительное ожидание (или менее негативное ожидание, нежели пас), зависит от шансов, предоставляемых вам за ваши деньги: то есть размер банка и ваши предполагаемые шансы на то, что оппонент, сделавший первоначальную ставку, не имеет фулл хауса и сбросит, имея две пары. Последнее предположение требует, конечно, умения читать руки и оппонентов, о чем я поговорю в более поздних главах. На таком уровне игры расчет математического ожидания становится намного запутаннее, нежели когда вы просто подбрасываете монетку.

      Математическое ожидание также способно показать, что один розыгрыш является менее убыточным, нежели другой. Например, когда вы думаете, что теряете 75 центов, включая анте, разыгрывая руку, вы тем не менее должны ее разыгрывать, поскольку это лучше, чем сброс при анте в $1.

      Другой важной причиной понимать математическое ожидание является то, что такое понимание позволяет вам хладнокровно относиться к возможному выигрышу или проигрышу ставки: когда вы делаете хорошую ставку или хороший пас, вы будете знать, что заработали или сэкономили конкретную сумму, которую более слабый игрок заработать или сэкономить не смог бы. Намного более сложно сделать волевой пас, если вас перетянули. Однако деньги, которые вы сэкономили, сделав пас вместо колла, прибавляются к вашим выигрышам на конец вечера или месяца. Честное слово: сделав хороший пас, я получаю удовольствие, несмотря на то что проиграл раздачу.

      Просто помните, что, поменяй вас местами, ваш оппонент не сделал бы такого паса, и, как мы увидим при обсуждении Фундаментальной теоремы покера в следующей главе, это то, из чего складывается ваше преимущество. Вы должны радоваться подобным моментам. Вам следует даже извлекать удовольствие из проигрышных сессий, когда вы знаете, что другие игроки на вашем месте потеряли бы с вашими картами еще больше денег.

      Выигрыш в час

      Как говорилось в примере с подбрасыванием монетки в начале этой