Inventions in the Century. Doolittle William Henry. Читать онлайн. Newlib. NEWLIB.NET

Автор: Doolittle William Henry
Издательство: Public Domain
Серия:
Жанр произведения: Зарубежная классика
Год издания: 0
isbn:
Скачать книгу
these with what he calls "the seven wonders of American invention." They were the cotton-gin; the adaptation of steam to methods of transportation; the application of electricity to business pursuits; the harvester; the modern printing-press; the ocean cable; and the sewing machine. "How wonderful," he adds, "in conception, in construction, in purpose, these great inventions are; how they dwarf the Pyramids and all the wonders of antiquity; what a train of blessings each brought with its entrance into social life; how wide, direct and far-reaching their benefits. Each was the herald of a social revolution; each was a human benefactor; each was a new Goddess of Liberty; each was a great Emancipator of man from the bondage of labour; each was a new teacher come upon earth; each was a moral force."

      Of these seven wonders, the harvester and the cotton-gin will only be described in this chapter. "Harvester" has sometimes been used as a broad term to cover both mowers and reapers. In a recent and more restricted sense, it is applied to a machine that cuts grain, separates it into gavels, and binds it.

      The difficulty that confronted the invention of mowers was the construction, location and operation of the cutting part. To convert the scythe or the sickle, or some other sharp blade into a fast reciprocating cutter, to hang such cutter low so that it would cut near the ground, to protect it from contact with stones by a proper guard, to actuate it by the wheels of the vehicle, to hinge the cutter-bar to the frame so that its outer end might be raised, and to arrange a seat on the machine so that the driver could control the operating parts by means of a lever, or handles, were the main problems to be solved.

      In 1799, Boyce, of England, had a vertical shaft with six rotating scythes beneath the frame of the implement. This died with the century.

      In 1800, Meares, his countryman, tried to adapt shears. He was followed there, in 1805, by Plucknett, who introduced a horizontal, rotating, circular blade. Others, subsequently, adopted this idea, both in England and America. It had been customary, as in olden times, to push the apparatus forward by a horse or horses hitched behind. But, in 1806, Gladstone had patented a front draft machine, with a revolving wheel armed with knife-blades cutting at one side of the machine and a segment-bar with fingers which gathered the grain and held the straw while the knife cut it.

      Then, in 1807, Salonen introduced vibrating knifes over stationary blades, fingers to gather grain to the cutters, and a rake to carry the grain off to one side.

      In 1822, Ogle, also of England, was the first to invent the reciprocating knife-bar. This is the movement that has been given in all the successful machines since. Ogle's was a crude machine, but it furnished the ideas of projecting the cutter-bar at the side of a reel to gather the grain to the cutter and of a grain platform which was tilted to drop the sheaf.

      The world is indebted also to the Rev. Patrick Bell, of Scotland, who had invented and built as early as 1823-26, a machine which would cut an acre of grain in an hour, and is thus described by Knight:

      "The machine had a square frame on two wheels which ran loose on the axle, except when clutched thereto to give motion to the cutters. The cutter-bar had fixed triangular cutters between each of which was a movable vibrating cutter, which made a shear cut against the edge of the stationary cutter, on each side. It had a reel with twelve vanes to press the grain toward the cutters, and cause it to fall upon a travelling apron which carried away cut grain and deposited it at the side of the machine. The reel was driven by bevel-gearing."

      It was used but a few years and then revived again at the World's Fair in London, in 1851.

      In the United States, inventions in mowers and reapers began to make their appearance about 1820. In 1822, Bailey was the first to patent a mowing machine. It was a circular revolving scythe on a vertical axis, rotated by gearing from the main axle, and so that the scythe was self-sharpened by passing under a whet-stone fixed on an axis and revolving with the scythe and was pulled by a horse in front. In 1828, Lane, of Maine, combined the reaper and thresher. In 1831, Manning had a row of fingers and a reciprocating knife, and in 1833, Schnebly introduced the idea of a horizontal endless apron on which the grain fell, constructed to travel intermittently so as to divide the grain into separate parts or gavels, and deliver the gavels at one side. Hussey, of Maryland, in 1833, produced the most useful harvester up to that time. It had open guard fingers, a knife made of triangular sections, reciprocating in the guard, and a cutter-bar on a hinged frame.

      Then came the celebrated reaper of McCormick, of Virginia, in 1834, and his improvements of 1845-1847, and by 1850 he had built hundreds of his machines. Other inventors, too numerous to mention, from that time pushed forward with their improvements. Then came many public trials and contests between rival manufacturers and inventors.

      One of the earliest and most notable was the contest at the World's Fair, in London, in 1851. This exhibition, the first of the kind the world had seen, giving to the nations taking part such an astonishing revelation of each other's productions, and stimulating in each such a surprising growth in all the industrial and fine arts, revealed nothing more gratifying to the lover of his kind than those inventions of the preceding half-century that had so greatly lifted the farm labourer from his furrow of drudgery.

      Among the most conspicuous of such inventions were the harvesters. Bell's machine, previously described, and Hussey's and McCormick's were the principal contesting machines. They were set to work in fields of grain, and to McCormick was finally awarded the medal of honour.

      This contest also opened the eyes of the world to the fact that vast tracts of idle land, exceeding in extent the areas of many states and countries, could now be sown and reaped – a fact impossible with the scythe and the sickle. It was the herald of the admission into the family of nations of new territories and states, which, without these machines, would unto this day be still wild wildernesses and trackless deserts.

      This great trial also was followed by many others, State and International. In 1852, there was in the United States a general trial of reapers and mowers at Geneva, New York; in 1855, at the French Exposition, at Paris, where again McCormick met with a triumph; in 1857, at Syracuse, New York, and subsequently at all the great State and International Expositions. These contests served to bring out the failures, and the still-existing wants in this line of machinery. The earlier machines were clumsy. They were generally one-wheeled machines, lacked flexibility of parts and were costly. They cut, indeed, vast tracts of grain and grass, but the machines had to be followed by an army of men to bind and gather the fallen grain. This army demanded high wages and materially increased the cost of reaping the crop, and sadly diminished the profits.

      When the Vienna Exposition, in 1873, was held, a great advance was shown in this and all other classes of agricultural machinery. Reapers and mowers were lighter in construction, and far less in cost, and stronger and more effective in every way. The old original machines of McCormick on which he had worked for twenty years prior to the 1851 triumph, had been succeeded by another of his machines, on which an additional twenty years of study, experiment and improvement had been expended. An endless number of inventors had in the meantime entered the lists. The frame, the motive gearing, the hinged cutter-bar and knives, the driver's seat, the reel, the divider, for separating the swath of grain to be cut from the uncut, the raising and depressing lever, the self-raker, and the material of which all the parts were composed had all received the greatest attention, and now was awaiting the coming of a perfect mechanical binder that would roll the grain on the machine into a bundle, automatically bind it, and drop the bound bundles on the ground. The latter addition came in an incomplete shape to Vienna. The best form was a crude wire binder. In 1876 at the Centennial Exhibition at Philadelphia, the mowers and reapers blossomed still more fully, but not into full fruition; for it was not until two or three years thereafter that the celebrated twine binders, which superseded the wire, were fully developed.

      Think of the almost miraculous exercise of invention in making a machine to automatically cut the grain, elevate it to a platform, separate and roll it into sheaves, seize a stout cord from a reel, wrap it about the sheaf, tie a knot that no sailor could untie, cut the cord, and throw the bound sheaf to one side upon the ground!

      So great became the demand for this binders' twine that great corporations engaged in its manufacture, and they in turn formed a great trust to control the world's supply. This one item of twine, alone, amounted to millions of dollars every year, and from its manufacture arose