Inventions in the Century. Doolittle William Henry. Читать онлайн. Newlib. NEWLIB.NET

Автор: Doolittle William Henry
Издательство: Public Domain
Серия:
Жанр произведения: Зарубежная классика
Год издания: 0
isbn:
Скачать книгу
as up, and this made the engine double-acting, increasing its power and speed. He converted the reciprocating motion of the piston into a rotary motion by the adoption of the crank, and introduced the well-known parallel motion, and many other improvements. In short, he demonstrated for the first time by a practical and efficient engine that the expansive force of steam could be used to drive all ordinary machinery. He then secured his inventions by patents against piracy, and sustained them successfully in many a hard-fought battle. It had taken him the last quarter of the 18th century to do all these things.

      Watt was the proper precursor of the nineteenth century inventions, as in him were combined the power and attainments of a great scientist and the genius of a great mechanic. The last eighteen years of his life were passed in the 19th century, and he was thus enabled to see his inventions brought within its threshold and applied to those arts which have made this age so glorious in mechanical achievements.

      Watt so fitly represents the class of modern great inventors in his character and attainments that the description of him by Sir Walter Scott is here pertinent as a tribute to that class, and as a delineation of the general character of those benefactors of his race of which he was so conspicuous an example: —

      Says Sir Walter: —

      "Amidst this company stood Mr. Watt, the man whose genius discovered the means of multiplying our national resources to a degree, perhaps, even beyond his own stupendous powers of calculation and combination; bringing the treasures of the abyss to the summit of the earth – giving to the feeble arm of man the momentum of an Afrite – commanding manufactures to rise – affording means of dispensing with that time and tide which wait for no man – and of sailing without that wind which defied the commands and threats of Xerxes himself. This potent commander of the elements – this abridger of time and space – this magician, whose cloudy machinery has produced a change in the world, the effects of which, extraordinary as they are, are perhaps only beginning to be felt – was not only the most profound man of science, the most successful combiner of powers and calculator of numbers, as adapted to practical purposes, was not only one of the most generally well-informed, but one of the best and kindest of human beings."

      The first practical application of steam as a working force was to pumping, as has been stated. After Watt's system was devised, suggestions and experiments as to road locomotives and carriages were made, and other applications came thick and fast. A French officer, Cugnot, in 1769 and 1770, was the first to try the road carriage engine. Other prominent Frenchmen made encouraging experiments on small steamboats – followed in 1784-86 by James Rumsey and John Fitch in America in the same line. Watt patented a road engine in 1784. About the same time his assistant, Murdock, completed and tried a model locomotive driven by a "grasshopper" engine. Oliver Evans, the great American contemporary of Watt, had in 1779 devised a high-pressure non-condensing steam engine in a form still used. In 1786-7 he obtained in Pennsylvania and Maryland patents for applying steam to driving flour mills and propelling waggons. Also about this time, Symington, the Scotchman, constructed a working model of a steam carriage, which is still preserved in the museum at South Kensington, London. Symington and his fellow Scotchmen, Miller and Taylor, in 1788-89 also constructed working steamboats. In 1796 Richard Trevithick, a Cornish marine captain, was producing a road locomotive. The century thus opened with activity in steam motive power. The "scantlings" of the Marquis of Worcester were now being converted into complete structures. And so great was the activity and the number of inventors that he is a daring man who would now decide priority between them. The earliest applications in this century of steam power were in the line of road engines.

      On Christmas eve of 1801, Trevithick made the initial trip with the first successful steam road locomotive through the streets of Camborne in Cornwall, carrying passengers. In one of his trips he passed into the country roads and came to a tollgate through which a frightened keeper hastily passed him without toll, hailing him as the devil.

      Persistent efforts continued to be made to introduce a practical steam road carriage in England until 1827. After Trevithick followed Blenkinsop, who made a locomotive which ran ten miles an hour. Then came Julius Griffith, in 1821, of Brompton, who patented a steam carriage which was built by Joseph Bramah, one of the ablest mechanics of his time. Gordon, Brunton and Gurney attempted a curious and amusing steam carriage, resembling a horse in action – having jointed legs and feet, but this animal was not successful. Walter Hancock, in 1827, was one of the most persistent and successful inventors in this line; but bad roads and an unsympathetic public discouraged inventors in their efforts to introduce steam road carriages, and their attention was turned to the locomotive to run on rails or tracks especially prepared for them. Wooden and iron rails had been introduced a century before for heavy cars and wagons in pulling loads from mines and elsewhere, but when at the beginning of the century it had been found that the engines of Watt could be used to drag such loads, it was deemed necessary to make a rail having its top surface roughened with ridges and the wheels of the engine and cars provided with teeth or cogs to prevent anticipated slipping.

      In England, Blackett and George Stephenson discovered that the adhesion of smooth wheels to smooth rails was sufficient. Without overlooking the fact that William Hendley built and operated a locomotive called the Puffing Billy in 1803, and Hackworth one a little later, yet to the genius of Stephenson is due chiefly the successful introduction of the modern locomotive. His labours and inventions continued from 1812 for twenty years, and culminated at two great trials: the first one on the Liverpool and Manchester Railway in 1829, when he competed with Hackworth and Braithwaite and Ericsson, and with the Rocket won the race; and the second at the opening of the same road in 1830, when with the Northumbrian, at the head of seven other locomotives and a long train of twenty-eight carriages, in which were seated six hundred passengers, he ran the train successfully between the two towns.

      On this occasion Mr. Huskisson, Home Secretary in the British Cabinet, while the cars were stopping to water the engines, and he was out on the track talking with the Duke of Wellington, was knocked down by one of the engines and had one of his legs crushed. Placed on board of the Northumbrian, it was driven at the rate of thirty-six miles an hour by Stephenson to Eccles. Mr. Huskisson died there that night. This was its first victim, and the greatest speed yet attained by a locomotive.

      The year 1829 therefore can be regarded as the commencement of the life of the locomotive for transportation of passengers. The steam blast thrown into the smokestack by Hackworth, the tubular boiler of Seguin and the link motion of Stephenson were then, as they now are, the essential features of locomotives.

      In the meantime America had not been idle. The James Watt of America, Oliver Evans, in 1804 completed a flat-bottomed boat to be used in dredging at the Philadelphia docks, and mounting it on wheels drove it by its own steam engine through the streets to the river bank. Launching the craft, he propelled it down the river by using the same engine to drive the paddle wheels. He gave to this engine the strange name of Oruktor Amphibolos.

      John C. Stevens of New Jersey was, in 1812, urging the legislature of the State of New York to build railways, and asserting that he could see nothing to hinder a steam carriage from moving with a velocity of one hundred miles an hour. In 1829 George Stephenson in England had made for American parties a locomotive called The Stourbridge Lion, which in that year was brought to America and used on the Delaware and Hudson R. R. by Horatio Allen. Peter Cooper in the same year constructed a locomotive for short curves, for the Baltimore and Ohio Railroad.

      Returning now to steam navigation: – Symington again entered the field in 1801-2 and constructed for Lord Dundas a steamboat, named after his wife, the Charlotte Dundas, for towing on a canal, which was successfully operated.

      Robert Fulton, an American artist, and subsequently a civil engineer, built a steamboat on the Seine in 1803, assisted by R. Livingston, then American Minister to France. Then in 1806 Fulton, having returned to the United States, commenced to build another steamboat, in which he was again assisted by Livingston, and in which he placed machinery made by Boulton and Watt in England. This steamboat, named the Clermont, was 130 ft. long, 18 ft. beam, 7 ft. depth and 160 tons burden. It made its first trip on the Hudson, from New York to Albany and return, in August, 1807, and subsequently made regular trips. It was the first commercially successful steamboat ever made, as George Stephenson's was the first commercially