A History of Inventions, Discoveries, and Origins, Volume II (of 2). Johann Beckmann. Читать онлайн. Newlib. NEWLIB.NET

Автор: Johann Beckmann
Издательство: Public Domain
Серия:
Жанр произведения: Зарубежная классика
Год издания: 0
isbn:
Скачать книгу
cooled faster between the strokes, and therefore at every fresh admission consumed a greater proportionate quantity of steam. But being made aware of a much greater consumption of steam than he had imagined, he was not satisfied without a thorough inquiry into the cause. With this view he made experiments upon the merits of boilers of different constructions; on the effect of substituting a less perfect conductor, as wood, for the material of the cylinder; on the quantity of coal required to evaporate a given quantity of water; on the degree of expansion of water in the form of steam: and he constructed a boiler which showed the quantity of water evaporated in a given time, and thus enabled him to calculate the quantity of steam consumed at each stroke of the engine. This proved to be several times the content of the cylinder. He soon discovered that, whatever the size and construction of the cylinder, an admission of hot steam into it must necessarily be attended with very great waste, if in condensing the steam previously admitted, that vessel had been cooled down sufficiently to produce a vacuum at all approaching to a perfect one. If, on the other hand, to prevent this waste, he cooled it less thoroughly, a considerable quantity of steam remained uncondensed within, and by its resistance weakened the power of the descending stroke. These considerations pointed out a vital defect in Newcomen’s engine; involving either a loss of steam, and consequent waste of fuel; or a loss of power from the piston’s descending at every stroke through a very imperfect vacuum.

      It soon occurred to Watt, that if the condensation were performed in a separate vessel, one great evil, the cooling of the cylinder, and the consequent waste of steam, would be avoided. The idea once started, he soon verified it by experiment. By means of an arrangement of cocks, a communication was opened between the cylinder, and a distinct vessel exhausted of its air, at the moment when the former was filled with steam. The vapour of course rushed to fill up the vacuum, and was there condensed by the application of external cold, or by a jet of water; so that fresh steam being continually drawn off from the cylinder to supply the vacuum continually created, the density of that which remained might be reduced within any assignable limits. This was the great and fundamental improvement.

      Still, however, there was a radical defect in the atmospheric engine, inasmuch as the air being admitted into the cylinder at every stroke, a great deal of heat was abstracted, and a proportionate quantity of steam wasted. To remedy this, Watt excluded the air from the cylinder altogether; and recurred to the original plan of making steam the moving power of the engine, not a mere agent to produce a vacuum. In removing the difficulties of construction which beset this new plan, he displayed great ingenuity and powers of resource. On the old plan, if the cylinder was not bored quite true, or the piston not accurately fitted, a little water poured upon the top rendered it perfectly air-tight, and the leakage into the cylinder was of little consequence, so long as the injection water was thrown into that vessel. But on the new plan, no water could possibly be admitted within the cylinder; and it was necessary, not merely that the piston should be air-tight, but that it should work through an air-tight collar, that no portion of the steam admitted above it might escape. This he accomplished by packing the piston and the stuffing-box, as it is called, through which the piston-rod works, with hemp. A further improvement consisted in equalising the motion of the engine by admitting the steam alternately above and below the piston, by which the power is doubled in the same space, and with the same strength of material. The vacuum of the condenser was perfected by adding a powerful pump, which at once drew off the condensed and injected water, and with it any portion of air which might find admission; as this would interfere with the action of the engine if allowed to accumulate. His last great change was to cut off the communication between the cylinder and the boiler, when a portion only, as one-third or one-half, of the stroke was performed; leaving it to the expansive power of the steam to complete it. By this, œconomy of steam was obtained, together with the power of varying the effort of the engine according to the work which it has to do, by admitting the steam through a greater or smaller portion of the stroke.

      These are the chief improvements which Watt effected at different periods of his life. He was born June 19, 1736, at Greenock, where he received the rudiments of his education. Having at an early age manifested a partiality for the practical part of mechanics, he went in his eighteenth year to London to obtain instruction in the profession of a mathematical instrument-maker, but remained there little more than a year, being compelled to return home on account of his health. In 1757, shortly after his return home, he was appointed instrument-maker to the University of Glasgow, and accommodated with premises within the precincts of that learned body. In 1763 he removed into the town of Glasgow, intending to practise as a civil engineer. His first patent is dated June 5, 1769, which parliament extended in 1775 for twenty-five years in consideration of the national importance of the inventions, and the difficulty and expense of introducing them to public notice. He died at his house at Heathfield in the county of Stafford, on the 25th of August, 1819, at the advanced age of eighty-four, after having realized an ample fortune, the well-earned reward of his industry and ability.

      To enter into the history of the various applications of the steam-engine to the different branches of industry would carry us beyond the bounds of this work. “To enumerate its present effects,” says a well-known writer on the steam-engine1, “would be to count almost every comfort and every luxury of life. It has increased the sum of human happiness, not only by calling new pleasures into existence, but by so cheapening former enjoyments as to render them attainable by those who before could never have hoped to share them: the surface of the land, and the face of the waters are traversed with equal facility by its power; and by thus stimulating and facilitating the intercourse of nation with nation, and the commerce of people with people, it has knit together remote countries by bonds of amity not likely to be broken. Streams of knowledge and information are kept flowing between distant centres of population, those more advanced diffusing civilization and improvement among those that are more backward. The press itself, to which mankind owes in so large a degree the rapidity of their improvement in modern times, has had its power and influence increased in a manifold ratio by its union with the steam-engine. It is thus that literature is cheapened, and by being cheapened, diffused; it is thus that reason has taken the place of force, and the pen has superseded the sword; it is thus that war has almost ceased upon the earth, and that the differences which inevitably arise between people and people are for the most part adjusted by peaceful negotiation.”

      LENDING AND PAWNBROKING

      It appears singular to us at present that it should have been once considered unlawful to receive interest for lent money; but this circumstance will excite no wonder when the reason of it is fully explained. The different occupations by which one can maintain a family without robbery and without war, were at early periods neither so numerous nor so productive as in modern times; those who borrowed money required it only for immediate use, to relieve their necessities or to procure the conveniences of life; and those who advanced it to such indigent persons did so either through benevolence or friendship. The case now is widely different. With the assistance of borrowed money people enter into business, and carry on trades, from which by their abilities, diligence, or good fortune, so much profit arises that they soon acquire more than is requisite for their daily support; and under these circumstances the lender may undoubtedly receive for the beneficial use of his money a certain remuneration, especially as he himself might have employed it to advantage; and as by lending it he runs the risk of losing either the whole or a part of his capital, or at least of not receiving it again so soon as he may have occasion for it.

      Lending on interest, therefore, must have become more usual in proportion as trade, manufactures, and the arts were extended; or as the art of acquiring money by money became more common: but it long continued to be detested, because the ancient abhorrence against it was by an improper construction of the Mosaic law converted into a religious prejudice2, which, like many other prejudices more pernicious, was strengthened and confirmed by severe papal laws. The people, however, who often devise means to render the faults of their legislators less hurtful, concealed this practice by various inventions, so that neither the borrower nor lender could be punished, nor the giving and receiving of interest be prevented. As it was of more benefit than prejudice to trade, the impolicy of the prohibition became always more apparent; it was known that the new-invented usurious arts under which it was privately followed would occasion greater evils


<p>1</p>

Dr. Lardner.

<p>2</p>

J. D. Michaelis, in Syntagma Commentationum, ii. p. 9; and his Mosaisches Recht. iii. p. 86.