Дифференциальная психология профессиональной деятельности. Е. П. Ильин. Читать онлайн. Newlib. NEWLIB.NET

Автор: Е. П. Ильин
Издательство:
Серия: Мастера психологии
Жанр произведения: Общая психология
Год издания: 2008
isbn: 978-5-459-00869-2
Скачать книгу
чем-нибудь другим. У талантливого нет выбора». См.: Шин И. Улыбка Светлова. Л., 1968. С. 3.

      3

      Паустовский К. Г. Собр. соч. В 6 т. Т. 2. М., 1957. С. 507.

      4

      Профконсультационная работа со старшеклассниками. Киев, 1980. С. 18.

      5

      Пропускная способность определяется как максимальная скорость переработки информации при условии поддержания необходимых для данного вида деятельности точности и надежности передачи.

      6

      Низкий тремор важен при выполнении многих ювелирных по точности движений работ (сборка микросхем, граверная работа, стрельба и т. д.).

      7

      Теплов Б. М. Новые данные по изучению свойств нервной системы человека // Типологические особенности высшей нервной деятельности человека. Т. III. М., 1963. С. 5.

iVBORw0KGgoAAAANSUhEUgAAAUkAAAEXCAIAAACvbCF4AAAABmJLR0QAAAAAAAD5Q7t/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAToElEQVR42u2dXW4UydZFeybdUk8BxBBADAHEECyGAEzg+yxGYN7vFTAAPAA8gHo3r/VIP/mh79bdra1zT2SF3dW4ylmspRTKqsyMiMw4K/7KVP3yJwCcIr/wCABwGwBwG06Im//Cc8BtODW+XV8/efT488dPGN744/t3PZx1uK3KUxU+f/rs919/0/bqxUtqFBS+jodjGa4CvHvzNmV4fXZ2XKOUu56DiqHyvD8/X4fbktlPUOXO09QO8Y3b2Q5s+Ha7Tb4fLi7S8RxFb3XU8UKyPFixu9t6cLY6T03158ZJt0SI/8Dpq9xQyK7U7UMarsBTRi0vl+coXY50UGEuv1yubL7tFrHV1maz0Zt6spZfW1pT3aff937dcpq4+nrlJ6KT00b4Eh2qLYuvGg+1BFUkJ6hWszU6GbzpX6fg3MfijbnoEr1zr8rZapX8WN3OD3T7MIY7/Mbu0bWs2h9jr0VLQmKMFl2rNxMt9S70Ut1yC1rt2AUPH3RtrUS9qaxb2CecUvVKtkadD6mxUILalIizG2/KqbVcVIB2vwtuKwMPM+aNltNVHi6lH4fr3qpr837aC7dzqiQ/Yt+YL3HT0BIfD9UEPWtQgjrNFZNG1OnrTOXlQ8rLU6MsInjf79dcXOx7VS5Wn952f4a7XpoMY7uT2HNFJ1ocEjVaooFfOlo8YnUw6C6smTJ1L9KCts0OkpfPbCV3OLmFcl5KyunHnQxMdFQ7OuTLtaWQfintay4uai3Dstsu92ID0PRrYo82JrPW6LrZ2yXwXdz21CuDMbdHfhZOPHmlhmr69dHXXDLwu1e3Xanx4TT6bW824Z7GwEp/MpiaBJJDonZXruWxw8hgO0EbEZyIQ86HdLPpyd0ouHgTt93E5C58lZ+Y95Ogs8jDXLy75KJrHbR3cnu+NqAk3A9XsXNt+s9k5lanVox7XV07aW7HQ0nQ+7r/cWymxzFv4Cdu65A/ETiAcjH8NNy+P6v/udsOiTo3dkDqkvGqds5i0CqpdpU7m0RRBoZZRXctpzce2wuP/P/W3TmMfcj3eIvbLuViNh7Epm0bmwBnk2BNZk2ntFJ5uPbZmz/bSGr1UBK0ybVZiZC3mrnLbVeYbv8wbsfwFS1PLrp931bXgBmHk65xf7y8y+2xQmO7K32x/LcGbbuqRXuCNi14G2xmBOEBxS4z5257WOoLb3fb+bVesTV+LrQfWdXbJUiwJrM69qjT773H5K6S2hKnTa1rfhne7BrM1HGK506LoQCLbh/GauMaH5eBsu47CaQ2uq5j43EG6sZCCTpoqwUJWofi2G/Hjl1j8ppCm6u2q7zkliDc5bZH4zbuTm67NCpH1kWUdF08z1PLSpVvz4LdOj2uL/dzu82g6kvvZ4miNmwTt+sluH2r24e0ummcj2Yd/XFjEkh1OWZ82WbOiiIfapPTtmbkRZxcZRGysr3LbZ+W9qK+dFOS7spdac7c5fbiFHjmdho2D86z8JOk89RypovSqrxmls8YvK6ozXe79zq5n8WYYA75szGvmtTWd5fbuRy3J24fxep0CfUPJdPK2KhJILnb9+hXJ9je3IVD132g+9Uc2hW0f5Y/pNE5LlU6/4nb7v/8EVc+kEuLk/WwOv2cu13Puavbbqj8GZqH3226kvt385mp+OL8PL2r3tEt1aT85mLi46GWoLPOJ9iLhR8P6Z36jJxLPS1TOGR+aHgdy3+AoH/r522TQKrXLoaErnK06IT2Ad5i0EZvL5W1aGkBNoaTP2nPJ9g1L9+dhG+rhot315JddPBP/q8IwKmC2wC4DQC4DQC4DQC4DQC4DYDbAIDbAIDbAIDbAIDbAIDbALgNALgNALgNALgNALgNALgNgNsAgNsAgNsAgNsAgNsAgNs/If6FU3/lffulN8BtWCv5RVS5vfgDrIDbsEr8S7H52cb6S3eA27Dufts/HKV//St57VegAbdhlfg37vLDrO2nywG3YcWTbU2wtZPfrOYXiHEb1o1k1tRa43C/1Jjc/TZPBrdh9W5nEO5five2+EPNgNuwssm218/8s/Lb7fbdm7d8xI3bAIDbAIDbAIDbAIDbAIDbALgNALgNALgNALgNALgNALgNgNsAgNsAgNsAgNsAgNsAgNsAuA0AuA0AuA0AuA0AuA2A2wCA2wCA2wCA2wCA2wCA2wC4DQC4DQC4DQC4DQC4DQC4DYDbAIDbAIDbAIDbAHAvbn+7vn5/fv767Ezbh4sLvTxuEVWAq69XKtLvv/622WyoMxi5ubm5/HLpoH335u3nj5/0Dm7/D1ZI25NHj7V5X0/qKIXbbreqKpdBmwwniB8mf3z/fkSXlHti9fnTZwlgvY/bfyF5/FDS7OkdPSy9c/iak9iuKpVB+/jzkFHAqLLUEGvnwJWlyHz14qVz9xhTSrs8GnXi9l/4GbXWzsJrwON9PbW21fP1cDUi0jMdm0xVuQYF2sZxtZJVxSiL2oLoTImtq/S+9muCrrz6jl7WXl3p6B2VZMzLh5ydU1CZx5tSas6lTkl0ybGGMKtwO5s6A1WZnuEBugRVsXJUXbf33SeN0aLz0wCNVT8Gc3vTCiyGYjvkxPe2Y4xJp7ZYgMUh7f+47X5ylEFlcmmkhJ6XZzXaPP5x9Ktwahr0joquIrp2k72H1p7AeydPSpfoQqvoIYMPOS8HijPSCbEx+abkSdPTCj9EXagtZypxzzW0k8K7ZUl2daGhzkccQ9oOZshpbK7c++vM/dDc97SBumrQ0ZtocUeVyMxwowWz/nXkKAwUSPUSR3LVNVe1Q058bztcKne3utAvM0tNLrl25rZLmSwXcQaLpW9rXfWlT6sNUq5y0dO615eODN2tX9ZR1sRtj+TTiteXSsf7TtCTtHo7i9Vmt3VJZnT00vu1SnqA97Fi4lqbtB2JliZ2ij2GpX1OmvXlfm7vZ0cLwjFK1aL52d7J7fkUZeJ2hkBjS9HuOQMBbW005bI6AkaR3PIlcZ2sHW+5vZpCay/c8dZDqq3aQEzc9pjCzSom/y23VWUeat7T+Ny1Nlk2SyiOXVet0BrMHiq2aakjwdkl8Bxv1e0cco5723Gr2+6c2kB45vY4JvehNFqLbrfe0ihjedUGzBU/lzqaqul4HDKu4XusNcZQRjJ1IFAL2VrEXVEyuu1GwfM03L6j26pE1ewB1tXcqY4jgjYm98ChtS8e9LY4WezkWoC1rbo9HtrPjlvd9jzCo9Fb3E5X2eqj3uqk325NXb0f3UNttJymHr3PqU1pXbfTta2hcec5H5O7GatLaGnXxy79Lv22ElSmvhHcnrvt+eSB/wbBWY9raan3jPKsU9W7xnOC2bbE+Sy1RIE9xuR72DF3u44X7uS2O0ZP2TNCqGOeidttimLHLFIdnORJ+VAbq9S8nHhtaNIQTNxuqwYe9ruexgUFL+PN3fbaW53zY/KIZ1jHytpLIfVzFted5Wnz7dS43qlrt+MyUO6oTo/3c3s/OyZuezQ+LiTvdFuPJh/962wv6NUrJ267TDqqHbeRHjCklfJz1KH6gblv0vMxp5ZHn8LoHC+n5/nO18mdvjLSyW3Alg9CvTbeZgSL1VYvx+2HiaVNxLuW66L3uE7uHYXK4iKWj/oz1ATzP1kn38+Oidu5/K5u26j6dPwBRl17qPMQG1I7eX/IpKva/Mea+Zba59hqHTNeaJNhf+jnu60fFfqTgNql+/ODmp0/02qfJda7U8pt9qFD9Rk5lzZlmEyN4IgocuqHpgq2VG6LFv91w7//9a8Woi2YFTaejrknmAeJr2qHfogdTn8sQJtLLi6B839FAE4T3AbAbQDAbQDAbQDAbQDAbQDcBgDcBgDcBgDcBgDcBgDcBsBtOH38tZjjNwcCbsMqufp65e+x8f/b/cm/lB+34RTwt+da6Q8XF+2/BwNuw1rxN1tsNpv6LVyA27Bu8qXu9dtgMRy34UQ6bW3+Ch5/OeZP/itZuA2rx9/xWr/L0b+OsvgV9IDbsBoWf0zCS+U8HNyG1bvdfvOxfas+4Das1e32ndPNdsBtWB/+7RuPyf3l2P7ubtbJcRtWjz/98mq5xT7Aj+8BbsMhkMwaih/mJzUBtwEAtwEAtwEAtwFwGwBwGwBwGwBwGwBwGwBwGwC3AQC3AQC3AQC3AQC3AXAbAHAbAHAbAHAbAHAbAHAbALcBALcBALcBALcBALcBALcBcBsATs7t33/9jY2Nbe3bsts0dQCrBrcBcBsAcBsAcBsAcBsAcBsAt3EbALcBALcBALcBALcBALcBcBu3AXAbAHAbAHAbAHAbAHAbALdxGwC3AQC3AQC3AQC3V8W36+vPHz+9PjvTv5dfLm9ubo5bnj++f1eR3p+fv3vz9uiFAdxeK1La3wj/5NFj7zx/+my73R6rlXn14mXKc6xiAG6vHvWNtkg9tl7KJb+jfw9fmKuvV25ZNHaQ5PTYuA37D33tUrPIPbnflGPj1npaNQTtzRz6cHEhY0dL9aauat2ySqJBuEolt3XCOErPSyXY5Ne+midtY14+pJIkO+2MN6XTWi6A22tls9ksdtEOcUsy+T0nXa7xs4XUv9r0TuRxA6ETPMbOIWnmk3WVxgs6zcopOzc09d8Yrqtq7at4emkPdaHHGkpQqSlNvXThbbXecXYuT52G1M2LDsQYbp8CDuXWQ4414eF67dLTzaZ7F1JIW07TftyzzBkpWDA3AXYyujo7XaJDbhRs/sRtdfLa178+pP45N+VBvt7Zdb/t7nAbt08Eizofhe5yu2pZp+7u8NshnaxEJLZli4e1gbCuSr9eldwnbrtISnxsL1ykHHI6t7rtIXq9CnB7lf12urW/5bZ7y4y0M8LXyRavXhU8MG6yWadqcs3dtvu0cRTtczIQMHrpEYQajgwl7nJ3Yy71BgG3V4N70SZGQtxhvcttm1zbBduuNG1pncZn6csD5iqMu1YPvMeGJj1w7VG1OS+73QT2qKHOq+vqmhuRu4zJdZon6sQJbq8PBb0/067DVL+ZmN7ldpa+am+ZPrkdstJeoqvat0S88NYGAi7bZEzu1iHtRZ1jO99MOjzbr83HfL7tl3zGjtsr7rotmIJentj2RPxkLc0DbB1V9DudzJYtlV5KOa9U55CX3Ny9+7TIlkR0lfbrWt3E7UzUlaCX7iOkRxD+9F6nufC39ts6U+n4UdT5P+D2yqh/CpY/Haky115dHtZw16F81tXW2+VGPsqqf8eqHb30IV3bVvL8CVmEzMzcGdVltnx45g7ZKmpTCet8Xhfm7sZP1NvdOZds/rCdCMHtU5B8vz8FmwgwGdBOrtrPqJv/susQluI2AOA2AOA2AOA2AG4DAG4DAG4DAG4DAG4D4DZuA+A2AOA2AOA2AOA2AOA2AG7jNgBuAwBuAwBuAwBuH/WRsT2cjYDE7Xt5ZEBd4DbxBNQFbhNPQF3gNvFEXQBuE0/UBW7zyIgn6gK3iSegLnCbeALqAreJJ6AucJt4oi4Atx9WPG23288fP2m7/HLZfiIbcBu31xpPr8/O2l9H6539fpqbugDcfijx9P78XEk9efRYnbZ8vvp6ZdX1koeM27i91njS8FvpvHrxsvXSz58+06Ydva9z/vj+3e9rJy+9X7eaiPY1vN9sNjVZX1LPyVWaFOw6VBNU07N4I3pfW853amPxWgFwG7dP1m3ZsthFy0m9aRNygoRR956GQG+2kby10VUaC/hMtxER0pe0lsVXebCweEjZfbi4qAmq2BFeaeqQj+oSZb04y3BqrQC4jdsn67YH5JOuLG43sZuo3nc68lD76bHfvXmrl7p8b7d9VRqIWma9qX3l6FI5r3o7reXCbdz+Wdy2URly73JbzjSxJ26rX9XJdbSsQ+5p93PbHXKyVqthnyNzDrkbx23cxu2/3Ng1iY1jXmxrc3IPvJvb6p8zMI5vXnhfHMY3t8dDvlzlrFkrXy8HuMWZP6XR7Wy61gMK3MbtU3Pbsd7MybjXK1J2oBlrG21sdVtDgJZgfSenefNsv7q9eMgFaI2F32ljhDu67Szc/+cWcBu3T8ptd7PSo45jbaM7xsy3bUX0lmA6IS/rmNwNQcb5ttRDg/3G5B5cJME6yK+T+ZS8yjwfk7sJm0xJcBu31+p2lr7cg6kr00tJGxvrOrlN8Lqaz8l6dXXb+17fypn2Zz+33TpIYyWiBN122Gf3vcpCO3qntQLzfttr720wgtu4fTpuWx5FeZ2IRtrqdvQ+/7//106dqVa33bXaVcsT2fZz2y8zIW9Z18LL7bbmP59vK81/3mkTqLj9cN3O+NyLYT8wwR/7h6vycJeKyuuHWIrbuH2CbgN1gdvEE1AXuE08URc8HNwmnqgL3AYeDnWB28QTUBe4TTwBdYHbxBNQF7hNPFEXPBzcJp6oC9z+2R8Z28PZCEjcBsBt3AbAbQDAbQDAbQDAbQDAbQDcBoCTdJuNje1k/rDnF5o6gJMEtwFwGwBwGwBwGwBwGwBwGwC3AQC3AQC3AQC3AQC3AQC3AXAbTo2bm5tv19fetM8DwW04ES6/XLb/ALjdbnksuA2r5/35ef5D74eLC+2/e/OWx4LbsHqeP3326sVL7282G7mtf3ksuA2rn2xL5iePHr8+O5Ph2lfXzWPBbVg9366v5bOG5Z8/ftJQXPsynBU13IbVI6Xr4pnn3ozJcRtWj4bikjmfgWlwro1+G7dh9cjkfPSlfQ3L6bRxGwBwGwAeJP8Bw+W5s6aBPIIAAAAASUVORK5CYII=iVBORw0KGgoAAAANSUhEUgAAARYAAABwCAIAAABU9cjrAAAABmJLR0QAAAAAAAD5Q7t/AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAMmUlEQVR42u2dTY4cxxGF5yY24CtI0BEk6AgkeIQBj0DyBoROQC1tL2wfQNxYK/EAs6e2syEgr7iwH/wBD4HMrJqeniGnM+s9NBrdVZV/EfEiI6Orsq/+GwTBA3AVEQRBKBQEoVAQhEJBEAoFQRAKBcHsFPr948fh6/b2NhKfF//544+bm5uX19fvf3kfaXxZCv3lT38