Центры давления каждого из участков находятся ниже центра тяжести смоченной площади по наклонной стенке, точнее по оси симметрии, на расстоянии I0/ωlц.u.
11. Общая методика определения сил на криволинейные поверхности
1. В общем случае, это давление:
Pz = ρgWg,
где Wg – обьем рассматриваемой призмы.
В частном случае, направления линий действия силы на криволинейную поверхность тела, давления зависят от направляющих косинусов следующего вида:
Сила давления на цилиндрическую поверхность с горизонтальной образующей полностью определена. В рассматриваемом случае ось OY направлена параллельно горизонтальной образующей.
2. Теперь рассмотрим цилиндрическую поверхность с вертикальной образующей и направим ось OZ параллельно этой образующей, что значит ωz = 0.
Поэтому по аналогии, как и в предыдущем случае,
где h'ц.т. – глубина центра тяжести проекции под пьезометрическую плоскость;
h' ц.т. – то же самое, только для ωy.
Аналогично, направление определяется направляющими косинусами
Если рассмотреть цилиндрическую поверхность, точнее, объемный сектор, с радиусом γ и высотой h, с вертикальной образующей, то
ωx = hy,
h'ц.т. = 0,5h.
3. Осталось обобщить полученные формулы для прикладного применения произвольной криволинейной поверхности:
12. Закон Архимеда. Условия плавучести погруженных тел
Следует выяснить условия равновесия погруженного в жидкость тела и следствия, вытекающие из этих условий.
Сила, действующая на погруженное тело – равнодействующая вертикальных составляющих Pz1, Pz2,т. е.:
Pz1 = Pz1 – Pz2 = ρgWТ. (1)
где Pz1, Pz2 – силы направленные вниз и вверх.
Это выражение характеризует силу, которую принято называть архимедовой силой.
Архимедовой силой является сила, равная весу погруженного тела (или его части): эта сила приложена в центр тяжести, направлена вверх и количественно равна весу жидкости, вытесненной погруженным телом или его частью. Мы сформулировали закон Архимеда.
Теперь разберемся с основными условиями плавучести тела.
1. Объем жидкости, вытесненной телом, называется объемным водоизмещением. Центр тяжести объемного водоизмещения совпадает с центром давления: именно в центре давления приложена равнодействующая сил.
2. Если тело погружено полностью, то объем тела W совпадает с WТ, если нет, то W < WТ, то есть Pz = ρgW.
3. Тело будет плавать только в том случае, если вес тела
GТ = Pz = ρgW, (2)
т. е. равен архимедовой силе.
4. Плавание:
1) подводное, то есть тело погружено полностью, если P = Gт, что означает (при однородности тела):
ρgW =