Как следует относиться к такому несоответствию модели и реальности? Следует ли отказаться от использования этой модели или целесообразно создать более сложную модель, полностью отражающую все многообразие действительности? Ответы на эти вопросы зависят от поставленных исследователем задач. Если мы хотим получить общее представление об исследуемом объекте, «уловить» в нем важнейшие взаимосвязи и увидеть упрощенные влияния экзогенных (вводимых извне) переменных на эндогенные (объясняемые данной моделью) переменные, то применение подобных моделей оправданно. Единственной модели, способной в полной мере осветить рассматриваемую проблему, не существует. Поэтому экономисты используют множество моделей, каждая из которых решает одну или несколько задач. Например, словесные модели претендуют на описательное отображение объективных закономерностей экономического развития. Таковы закон возвышения потребностей, закон спроса, закон предложения и многие другие законы, с которыми вы познакомитесь в дальнейшем. В качестве экономических моделей используются также математические формулы и графики. Взаимозависимость экономических явлений можно изобразить и отдельной формулой, и системой математических уравнений. Первая попытка исследования экономических процессов при помощи математических методов была предпринята в ХIХ в. французским математиком Антуаном Курно (1801–1877). С тех пор экономисты широко используют математический инструментарий для решения экономических задач. Составляя системы уравнений, они дают описание глубинных закономерностей в экономике, которые невозможно обнаружить прямыми наблюдениями.
Использование математических методов требует измерения экономических величин. При этом подход к измерению может быть различным. Например, возможно использование показателей абсолютных (валовой национальный продукт – ВНП, национальный доход – НД) и относительных (ВНП на душу населения, норма прибыли, банковская ставка процента). Показатели могут быть частными, характеризующими состояние отдельно взятого экономического явления или объекта (производительность