Сказанное в обсуждении задачи 5.5 можно обобщить: из ложного утверждения следует ЛЮБОЕ другое утверждение, в том числе и ложное. Другими словами, допустив одну ложь, пусть даже «самую маленькую», можно логически доказать что угодно! В это трудно поверить. Узнав об этом от Бертрана Рассела, один философ был потрясен и спросил: «Вы всерьез считаете, что из неверного утверждения „Два плюс два – пять“ следует, что вы – Папа Римский?» Рассел в ответ привел такое доказательство: «Пусть 2 + 2 = 5. Известно также, что 2 + 2 = 4. Следовательно, 4 = 5. Вычитая 3, получаем, что 1 = 2. Я и Папа Римский – два человека. Следовательно, я и он – это один человек».
Задачи для самостоятельного решения
Задача 5.7. 1) Верно ли, что если Женя – Борин брат, то Боря – Женин брат?
2) Составьте обратное высказывание. Верно ли оно?
Задача 5.8. На планете Плюк действует правило: увидев чатланина, житель планеты должен сказать «Ку». В суд поступили дела пяти обвиняемых в нарушении этого правила:
1) Первый сказал «Ку» облезлой кошке.
2) Землянин Второй ничего не сказал при встрече с главным чатланином.
3) Часовой Третий спал на посту, не заметил подошедшего чатланина и ничего ему не сказал.
4) Четвертый сказал чатланину: «Ку. Как противно приветствовать такого мерзавца!»
5) Пятый не знал, что Шестой – чатланин, поэтому при встрече сказал ему: «Здравствуйте, уважаемый!»
Кто, с вашей точки зрения, нарушил данное правило, а кто нет?
Задача 5.9. Пусть на клетчатой бумаге нарисован многоугольник, составленный из целых клеточек. Рассмотрим два утверждения:
1) Если многоугольник можно разрезать на доминошки (прямоугольники 1 х 2), то количество клеточек четно.
2) Если количество клеточек четно, то многоугольник можно разрезать на доминошки.
Верны ли эти утверждения? Можно ли их доказать (опровергнуть) с помощью примера (контрпримера)?
Задача 5.10. Говорят, что если человек сорвет цветок папоротника, то станет понимать язык животных. Правду ли говорят?
Задача 5.11. Из утверждений «Число а делится на 2», «Число а делится на 4», «Число а делится на 12» и «Число а делится на 24» три верных, а одно неверное. Какое? Найдите три таких числа а.
Задача 5.12. На столе лежат четыре карточки, на которых сверху написано: «А», «Б», «4», «5». Известно, что на одной стороне каждой карточки написана буква, на другой – натуральное число. Какое наименьшее число карточек надо перевернуть, чтобы проверить истинность утверждения: «Если на одной стороне карточки написано четное число, то на другой – гласная буква»?
Задача 5.13. На вопрос, какая завтра будет погода, синоптик верно ответил:
(1) «если не будет ветра, то будет пасмурная погода без дождя»;
(2) «если будет дождь, то будет пасмурно