Выходное напряжение – переменное. Снимается с контактов – 1-2 одного емкостного накопителя энергии. Термоэлектрический генератор заряжает два накопителя одновременно.
Ключ К1 обеспечивает ток короткого замыкания в цепи всех термопар. Управление коммутацией тока короткого замыкания ключом К1 совместно с индуктивным накопителем L1 приводит к тому, что все параллельно соединенные конденсаторы обоих накопителей заряжаются не до половины напряжения питания, как в предыдущем режиме, а до напряжения питания.
U1=U2= Uo.
Где:
U0- напряжение термоэлектрического генератора.
U1 – выходное напряжение одного емкостного накопителя энергии.
U2 – выходное напряжение одного емкостного накопителя энергии.
В противном случае каждый конденсатор накопителя заряжался бы до напряжения текущей термопары + напряжение предыдущих термопар, как было заявлено выше в 1 и 2 режиме.
Схема емкостной термоэлектрической батареи с графиком напряжений заряда конденсаторов двух емкостных накопителей представлена на Рис. 11.
Рис. 11. Схема емкостной термоэлектрической батареи в режиме делителя напряжения с управлением зарядом/разрядом и графиком напряжений заряда конденсаторов.
В каждом накопителе все конденсаторы соединяются параллельно с общей емкостью:
С1=С2=С0*n
Где:
n- количество термопар.
С0 – емкость одного конденсатора.
Выходное напряжение – переменное:
Uвых = U1+U2 = 2U0
Где:
U0- напряжение термоэлектрического генератора.
U1 – выходное напряжение одного емкостного накопителя энергии.
U2 – выходное напряжение одного емкостного накопителя энергии.
Общая энергия системы:
W= C2*(2U0)²/2
Ориентировочные расчетные характеристики
Для оценки уровня энергетических характеристик и КПД предлагаемой емкостной термоэлектрической батареи с индуктивным накопителем для утилизации низко потенциального тепла рассмотрим хромель-копелевые термопары и dT = 50 градусов.
Значения запасенной энергии в емкостной термоэлектрической батарее в зависимости от типа и размеров используемых конденсаторов приведены в следующей таблице № 1.
Таблица № 1.
Исходя из вышеизложенного, для практических целей, режимы работ емкостного термоэлектрического генератора № 3 и № 4 являются основными для генерации переменного электрического тока.
В этом случае классический металлический термоэлектрический генератор работает не на нагрузку, а на заряд/перезаряд двух емкостных накопителей энергии. И далее, только один емкостной накопитель энергии питает нагрузку переменным током заряда/перезаряда.
Главный недостаток любых термоэлектрических генераторов, как большое внутреннее сопротивление перестает быть значимым. На первый план выходит время заряда/перезаряда двух емкостных накопителей энергии.
Для подтверждения работоспособности идеи был