Для простоты я изобразил лишь несколько дислокаций. Таких дефектов у металлов, как правило, в избытке. Линии дислокаций пересекаются и перекрывают друг друга
Звучит невесело, но вообще-то эти недостатки нам на руку. Благодаря им из металлов получаются отличные инструменты, режущие детали и… бритвенные лезвия, поскольку дефекты позволяют менять форму кристаллов.
Чтобы ощутить силу дислокаций, не нужен кузнечный молот. Когда вы сгибаете скрепку для бумаги, на самом деле гнутся металлические кристаллы. Иначе скрепка была бы хрупкой и с треском ломалась бы, словно палочка. Пластичность металла объясняется сдвигом дислокаций внутри кристалла. Они переносят крупицы материала с одной стороны кристалла на другую, причем делают это со скоростью звука. Сгибая скрепку, вы заставляете приблизительно 100 000 000 000 000 дислокаций двигаться со скоростью в сотни километров в секунду. Хотя каждая дислокация переносит крошечный кусочек кристалла (фактически одну атомную плоскость), этого хватает, чтобы металл гнулся, как сверхпрочный пластик, а не трескался, подобно камню.
Температура плавления металла показывает, насколько тесна связь между атомами и насколько свободно могут перемещаться нарушенные фрагменты. У свинца низкая температура плавления, поэтому его дислокации удивительно легки на подъем, и за счет этого свинец на редкость мягкий металл. А вот медь плавится при более высокой температуре, поэтому она твердая. Нагрев позволяет дислокациям перемещаться и выстраиваться по-новому. В результате металлы становятся мягче.
Открытие металлов было важным событием первобытной истории, но оно не решило главной проблемы – вокруг имелось не так уж много металла. Можно было, конечно, подождать, пока он упадет с неба, но это требовало колоссального терпения (каждый год на поверхность