Жизнь зарождалась в соленой морской воде, и первым клеткам – крохотным мешочкам с пресным содержимым – приходилось постоянно «выплевывать» проникающие в них ионы натрия, чтобы не «засолиться». Поэтому в мембране клеток появилось специальное устройство, которое сейчас принято называть натрий-калиевый насос. По сути, это белок, который занимается тем, что выкачивает из клетки ионы натрия и взамен впускает ионы калия: на каждые три «выплюнутых» натриевых иона приходится два «проглоченных» калиевых.
Ровно те же процессы происходят и с нейронами. Внутри клеток много ионов калия и отрицательно заряженных органических ионов. Снаружи, в крови и межклеточной жидкости, мало ионов калия, зато много ионов натрия. В покое мембрана нейронов проницаема для ионов калия и почти непроницаема для других ионов. Поэтому ионы калия выходят из клетки, вынося с собой положительные заряды.
Накапливающийся внутри клетки отрицательный заряд мешает новым порциям ионов калия выходить наружу. Устанавливается равновесие, при котором из клетки выходит и в нее входит равное число ионов калия в единицу времени.
Но вот в нашу клетку, на поверхности которой насосы неспешно перекачивали ионы снаружи и внутрь, забросили порцию новых химических реагентов. Это на принимающий контакт нейрона (дендрит) поступили белки-нейромедиаторы от клеток-смежников.
И работа клетки стремительно поменялась: поступившие нейромедиаторы инициировали каскад биохимических реакций, которые привели к изменению активности насосов. Последние тут же поменяли режим своей работы: начали лихорадочно впускать натрий в клетку и выпускать из неё калий. Вот в этот короткий период, когда мембрана «перезаряжается» (внутри заряд становится положительным, снаружи – отрицательным), и формируется нервный импульс, или потенциал действия нейрона.
Химическое создание потенциала каждого нейрона представляет собой сложнейший процесс, зависящий от точной балансировки концентраций ионов. Удивительная симфония, в которой каждый из исполнителей вступает в игру в нужный момент и четко исполняет свою партию. И лишь гармония абсолютной слаженности этого ансамбля (Гм, а кто в нем дирижер?) позволяет нейронам передавать информацию и обеспечивать возникновение наших мыслей.
Чередующиеся циклы поляризации, деполяризации и гиперполяризации нужны для того, чтобы на пике активации – хлоп! – нейрон выбросил нейромедиаторы из своего окончания – аксона, словно запуская конфетти в пространство между собой и другими нейронами. Нейромедиаторы начинают воздействовать на контакты других нейронов, в свою очередь передавая им сигнал на начало их активации.
И что же, мы каким-то образом можем всеми этими процессами сознательно управлять? Подождите, но и это еще не все! Ведь не едиными химическими реакциями жив нейрон: для стабильного воспроизведения его работы, для создания новых контактов —синапсов – необходим постоянный