Рис. 9. Формирование поисковых индексов
Длина полученного индекса равна числу уровней веса и не зависит от числа пикселей в имиджах. Значит, если установить стандартное число весов 10 (это удобно, так как соответствует принятой десятичной системе счисления), то эти индексы будут стандартными для всех библиотек, что обеспечит возможность их всеобщего применения.
Каждый образ в библиотеках распознавания должен быть снабжен индексом. Распознавание каждого нового образа должно начинаться с формирования его индекса, на его базе происходит быстрое распознавание по подготовленным библиотекам.
Точность распознавания по такого рода индексам может быть очень высокой. Например, при использовании десятизначной системы счисления (10 уровней веса от 0 до 9), даже если мы ограничимся только первой значащей цифрой каждой суммы, индексом будет комбинация из 10 однозначных, то есть вероятность случайных совпадений индексов не превысит 10—10 (1 / 10 миллиардов).
2.4.5. Паттерны подобия и другие способы сравнения и индексации в BCF
Выявление паттернов для понимания происходящих событий и управления ими – одно из важнейших приложений нейронных сетей.
Существует немало причин, почему два разных имиджа могут быть подобными или казаться нам подобными. Чаще всего подобие определяется общностью происхождения и/или изготовления разных объектов. Либо тем, что разные объекты изменяются и развиваются по некоторым общим паттернам, например по законам природы. Паттерны в живописи или музыке могут быть законами композиции, конструирования машин – формулами сопромата, в обществе – обычаями и государственными законами и так далее.
Аналог некоторого объекта – это другой объект с высокой степенью подобия данному объекту. Аналогия (похожесть) может быть общей или частной, по тому или иному отдельному параметру, статической или динамической, полной или частичной и т. п. Любой объект может иметь значительное число разных аналогов.
Мы описали распознавание имиджей и формирования поисковых индексов с использованием коэффициентов сходства, получаемых через векторное произведения матриц имиджей. Но это не единственный вариант, возможный в PANN. Мы проверили также другие возможности, в частности, распознавание через:
1. Матричные произведения входного и сравниваемого массивов на массив, представляющий «стандарт сравнения» [Xst] и вычисление CoS через разность полученных матричных сумм.
2. Характеристические суммы двух массивов и вычисление CoS через разность спектров мощностей сигналов входного и сравниваемого массивов.
3. Преобразование Фурье амплитудно-частотных спектров входного и сравниваемого массивов и вычисление CoS через разность или соотношение гармоник одноименных строк BCF-формата.
Разные виды распознавания могут использоваться совместно для повышения точности и достоверности окончательного заключения.
2.5. БИБЛИОТЕКИ СРАВНЕНИЯ КАК ОСНОВА РАСПОЗНАВАНИЯ
Распознавание